scholarly journals Pyrolyzing Renewable Sugar and Taurine on the Surface of Multi-Walled Carbon Nanotubes as Heterogeneous Catalysts for Hydroxymethylfurfural Production

Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 517 ◽  
Author(s):  
Huiping Ji ◽  
Jie Fu ◽  
Tianfu Wang

Conversion of biorenewable feedstocks into transportation fuels or chemicals likely necessitates the development of novel heterogeneous catalysts with good hydrothermal stability, due to the nature of highly oxygenated biomass compounds and the prevalence of water as a processing solvent. The use of carbon-based materials, derived from sugars as catalyst precursors, can achieve hydrothermal stability while simultaneously realizing the goal of sustainability. In this work, the simultaneous pyrolysis of glucose and taurine in the presence of multi-walled carbon nanotubes (MWCNTs), to obtain versatile solid acids, has been demonstrated. Structural and textural properties of the catalysts have been characterized by TEM, TGA, and XPS. Additionally, solid state nuclear magnetic resonance (ssNMR) spectroscopy has been exploited to elucidate the chemical nature of carbon species deposited on the surface of MWCNTs. Al(OTf)3, a model Lewis acidic metal salt, has been successfully supported on sulfonic groups tethered to MWCNTs. This catalyst has been tested for C6 sugar dehydration for the production of HMF in a tetrahydrofuran (THF)/water solvent system with good recyclability.

2021 ◽  
Author(s):  
Danijela Prokic ◽  
Marija Vukčević ◽  
Angelina Mitrović ◽  
Marina Maletić ◽  
Ana Kalijadis ◽  
...  

Abstract Carbon materials of different structural and textural properties (multi-walled carbon nanotubes, carbon cryogel, and carbonized hydrothermal carbon) were used as adsorbents for the removal of estrone, 17β-estradiol, and 17α-ethinylestradiol from aqueous solutions. Chemical modification and/or activation were applied to alter surface characteristics and to increase the adsorption and desorption efficiency of carbon materials. Surfaces of treated and untreated carbon materials were characterized through the examination of the textural properties, the nature of surface functional groups, and surface acidity. Although specific surface area and content of surface functional groups did not have a dominant influence on the adsorption process, it was found that a high ratio of surface mesoporosity affected the adsorption process most prominently by increasing adsorption capacity and the rate of the adsorption process. High values of adsorption efficiency (88–100 %) and maximum adsorption capacities (29.45–194.7 mg/g) imply that examined materials, especially mesoporous carbon cryogel and multi-walled carbon nanotubes, can be used as powerful adsorbents for relatively fast removal of estrogen hormones from water.


RSC Advances ◽  
2016 ◽  
Vol 6 (63) ◽  
pp. 58226-58235 ◽  
Author(s):  
Kranthi Kumar Gangu ◽  
Suresh Maddila ◽  
Surya Narayana Maddila ◽  
Sreekantha B. Jonnalagadda

Novel and sustainable heterogeneous catalysts, namely, multi-walled carbon nanotubes (MWCNT) decorated with Sm doped fluorapatite nanocomposites (MWCNT/Sm-FAp) were prepared with different loadings of Sm (1%, 2%, 3%, 5%, and 7%).


2017 ◽  
Vol 353 ◽  
pp. 239-249 ◽  
Author(s):  
Matteo Savastano ◽  
Paloma Arranz-Mascarós ◽  
Carla Bazzicalupi ◽  
Maria Paz Clares ◽  
Maria Luz Godino-Salido ◽  
...  

Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


Sign in / Sign up

Export Citation Format

Share Document