scholarly journals Towards Higher Rate Electrochemical CO2 Conversion: From Liquid-Phase to Gas-Phase Systems

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 224 ◽  
Author(s):  
Jun Song ◽  
Hakhyeon Song ◽  
Beomil Kim ◽  
Jihun Oh

Electrochemical CO2 conversion offers a promising route for value-added products such as formate, carbon monoxide, and hydrocarbons. As a result of the highly required overpotential for CO2 reduction, researchers have extensively studied the development of catalyst materials in a typical H-type cell, utilizing a dissolved CO2 reactant in the liquid phase. However, the low CO2 solubility in an aqueous solution has critically limited productivity, thereby hindering its practical application. In efforts to realize commercially available CO2 conversion, gas-phase reactor systems have recently attracted considerable attention. Although the achieved performance to date reflects a high feasibility, further development is still required in order for a well-established technology. Accordingly, this review aims to promote the further study of gas-phase systems for CO2 reduction, by generally examining some previous approaches from liquid-phase to gas-phase systems. Finally, we outline major challenges, with significant lessons for practical CO2 conversion systems.

2021 ◽  
Vol 778 ◽  
pp. 146293
Author(s):  
Thivaharan Varadavenkatesan ◽  
Shraddha Pai ◽  
Ramesh Vinayagam ◽  
Arivalagan Pugazhendhi ◽  
Raja Selvaraj

Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 430 ◽  
Author(s):  
Elnaz Bahadori ◽  
Antonio Tripodi ◽  
Alberto Villa ◽  
Carlo Pirola ◽  
Laura Prati ◽  
...  

The photoreduction of CO2 is an intriguing process which allows the synthesis of fuels and chemicals. One of the limitations for CO2 photoreduction in the liquid phase is its low solubility in water. This point has been here addressed by designing a fully innovative pressurized photoreactor, allowing operation up to 20 bar and applied to improve the productivity of this very challenging process. The photoreduction of CO2 in the liquid phase was performed using commercial TiO2 (Evonink P25), TiO2 obtained by flame spray pyrolysis (FSP) and gold doped P25 (0.2 wt% Au-P25) in the presence of Na2SO3 as hole scavenger (HS). The different reaction parameters (catalyst concentration, pH and amount of HS) have been addressed. The products in liquid phase were mainly formic acid and formaldehyde. Moreover, for longer reaction time and with total consumption of HS, gas phase products formed (H2 and CO) after accumulation of significant number of organic compounds in the liquid phase, due to their consecutive photoreforming. Enhanced CO2 solubility in water was achieved by adding a base (pH = 12–14). In basic environment, CO2 formed carbonates which further reduced to formaldehyde and formic acid and consequently formed CO/CO2 + H2 in the gas phase through photoreforming. The deposition of small Au nanoparticles (3–5 nm) (NPs) onto TiO2 was found to quantitatively influence the products distribution and increase the selectivity towards gas phase products. Significant energy storage in form of different products has been achieved with respect to literature results.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 30
Author(s):  
Jia Wang ◽  
Yuxin Wang ◽  
Yijian Wu ◽  
Yuwei Fan ◽  
Changliang Zhu ◽  
...  

Adaptive laboratory evolution (ALE) has been widely utilized as a tool for developing new biological and phenotypic functions to explore strain improvement for microalgal production. Specifically, ALE has been utilized to evolve strains to better adapt to defined conditions. It has become a new solution to improve the performance of strains in microalgae biotechnology. This review mainly summarizes the key results from recent microalgal ALE studies in industrial production. ALE designed for improving cell growth rate, product yield, environmental tolerance and wastewater treatment is discussed to exploit microalgae in various applications. Further development of ALE is proposed, to provide theoretical support for producing the high value-added products from microalgal production.


2019 ◽  
Vol 48 (36) ◽  
pp. 13508-13528 ◽  
Author(s):  
Diana M. Fernandes ◽  
Andreia F. Peixoto ◽  
Cristina Freire

This review focuses on the recent developments made in the fabrication of N-doped carbon materials for enhanced CO2 conversion and electrochemical reduction into high-value-added products.


2021 ◽  
Author(s):  
Genxiang Wang ◽  
Junxiang Chen ◽  
Yichun Ding ◽  
Pingwei Cai ◽  
Luocai Yi ◽  
...  

This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.


Author(s):  
Shuzhen Zhang ◽  
Celia Chen ◽  
Kangkang Li ◽  
Hai Yu ◽  
Fengwang Li

Electrochemical CO2 reduction reaction (eCO2RR) has been regarded as a promising means to store renewable electricity in the form of value-added chemicals or fuels. However, most of present eCO2RR studies...


Author(s):  
Elnaz Bahadori ◽  
Antonio Tripodi ◽  
Alberto Villa ◽  
Carlo Pirola ◽  
Laura Prati ◽  
...  

The photoreduction of CO2 is an intriguing process, which allows the synthesis of fuels and chemicals. One of the limitations for CO2 photoreduction in the liquid phase is its low solubility in water. This point has been here addressed by designing a fully innovative concept of pressurized photoreactor, allowing operation up to 20 bar and applied to improve the productivity of this very challenging process. The photoreduction of CO2 in the liquid phase was performed using commercial TiO2 (Evonink P25), TiO2 obtained by flame spray pyrolysis (FSP) and gold doped P25 (0.2 wt% Au-P25) in the presence of Na2SO3 as hole scavenger (HS). The different reaction parameters (catalyst concentration, pH and amount of HS) have been addressed. The products in liquid phase were formic acid and formaldehyde. Moreover, for longer reaction time and with total consumption of HS, gas phase products formed (H2 and CO) after accumulation of significant amount of organic compounds in the liquid phase, due to their consecutive photoreforming. Enhanced CO2 solubility in water was achieved by adding a base (pH= 12-14). In basic environment, CO2 formed carbonates which further reduced to formaldehyde and formic acid and consequently formed CO/CO2+H2 in the gas phase through photoreforming. The deposition of small Au nanoparticles (3-5 nm) (NPs) onto TiO2 was found to quantitatively influence the products distribution and increase the selectivity towards gas phase products.


2021 ◽  
Author(s):  
Wenbo Wang ◽  
Runqing Lu ◽  
Xin-Xin Xiao ◽  
Shanhe Gong ◽  
Daniel Kobina Sam ◽  
...  

Electrochemical carbon dioxide reduction reaction (eCO2RR) is a promising technology that uses electrical energy to catalytically reduce the greenhouse gas-CO2, which can convert CO2 into high value-added products such as...


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 95 ◽  
Author(s):  
Ahmad Tabish ◽  
Anish Mathai Varghese ◽  
Md A. Wahab ◽  
Georgios N. Karanikolos

CO2 emissions from the consumption of fossil fuels are continuously increasing, thus impacting Earth’s climate. In this context, intensive research efforts are being dedicated to develop materials that can effectively reduce CO2 levels in the atmosphere and convert CO2 into value-added chemicals and fuels, thus contributing to sustainable energy and meeting the increase in energy demand. The development of clean energy by conversion technologies is of high priority to circumvent these challenges. Among the various methods that include photoelectrochemical, high-temperature conversion, electrocatalytic, biocatalytic, and organocatalytic reactions, photocatalytic CO2 reduction has received great attention because of its potential to efficiently reduce the level of CO2 in the atmosphere by converting it into fuels and value-added chemicals. Among the reported CO2 conversion catalysts, perovskite oxides catalyze redox reactions and exhibit high catalytic activity, stability, long charge diffusion lengths, compositional flexibility, and tunable band gap and band edge. This review focuses on recent advances and future prospects in the design and performance of perovskites for CO2 conversion, particularly emphasizing on the structure of the catalysts, defect engineering and interface tuning at the nanoscale, and conversion technologies and rational approaches for enhancing CO2 transformation to value-added chemicals and chemical feedstocks.


2020 ◽  
Vol 6 (8) ◽  
pp. eaay3111 ◽  
Author(s):  
Lei Fan ◽  
Chuan Xia ◽  
Fangqi Yang ◽  
Jun Wang ◽  
Haotian Wang ◽  
...  

In light of environmental concerns and energy transition, electrochemical CO2 reduction (ECR) to value-added multicarbon (C2+) fuels and chemicals, using renewable electricity, presents an elegant long-term solution to close the carbon cycle with added economic benefits as well. However, electrocatalytic C─C coupling in aqueous electrolytes is still an open challenge due to low selectivity, activity, and stability. Design of catalysts and reactors holds the key to addressing those challenges. We summarize recent progress in how to achieve efficient C─C coupling via ECR, with emphasis on strategies in electrocatalysts and electrocatalytic electrode/reactor design, and their corresponding mechanisms. In addition, current bottlenecks and future opportunities for C2+ product generation is discussed. We aim to provide a detailed review of the state-of-the-art C─C coupling strategies to the community for further development and inspiration in both fundamental understanding and technological applications.


Sign in / Sign up

Export Citation Format

Share Document