scholarly journals Looking for the “Dream Catalyst” for Hydrogen Peroxide Production from Hydrogen and Oxygen

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 251 ◽  
Author(s):  
Federica Menegazzo ◽  
Michela Signoretto ◽  
Elena Ghedini ◽  
Giorgio Strukul

The reaction between hydrogen and oxygen is in principle the simplest method to form hydrogen peroxide, but it is still a “dream process”, thus needing a “dream catalyst”. The aim of this review is to analyze critically the different heterogeneous catalysts used for the direct synthesis of H2O2 trying to determine the features that the ideal or “dream catalyst” should possess. This analysis will refer specifically to the following points: (i) the choice of the metal; (ii) the metal promoters used to improve the activity and/or the selectivity; (iii) the role of different supports and their acidic properties; (iv) the addition of halide promoters to inhibit undesired side reactions; (v) the addition of other promoters; (vi) the effects of particle morphology; and (vii) the effects of different synthetic methods on catalyst morphology and performance.

TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 37-46 ◽  
Author(s):  
PEDRO E.G. LOUREIRO ◽  
SANDRINE DUARTE ◽  
DMITRY V. EVTUGUIN ◽  
M. GRAÇA V.S. CARVALHO

This study puts particular emphasis on the role of copper ions in the performance of hydrogen peroxide bleaching (P-stage). Owing to their variable levels across the bleaching line due to washing filtrates, bleaching reagents, and equipment corrosion, these ions can play a major role in hydrogen peroxide decomposition and be detrimental to polysaccharide integrity. In this study, a Cu-contaminated D0(EOP)D1 prebleached pulp was subjected to an acidic washing (A-stage) or chelation (Q-stage) before the alkaline P-stage. The objective was to understand the isolated and combined role of copper ions in peroxide bleaching performance. By applying an experimental design, it was possible to identify the main effects of the pretreatment variables on the extent of metals removal and performance of the P-stage. The acid treatment was unsuccessful in terms of complete copper removal, magnesium preservation, and control of hydrogen peroxide consumption in the following P-stage. Increasing reaction temperature and time of the acidic A-stage improved the brightness stability of the D0(EOP)D1AP bleached pulp. The optimum conditions for chelation pretreatment to maximize the brightness gains obtained in the subsequent P-stage with the lowest peroxide consumption were 0.4% diethylenetriaminepentaacetic acid (DTPA), 80ºC, and 4.5 pH.


Author(s):  
Zainab Khan ◽  
Nicholas F. Dummer ◽  
Jennifer K. Edwards

A series of bimetallic silver–palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver–palladium alloy. The optimal 1% Ag–4% Pd/TiO 2 bimetallic catalyst was able to produce approximately 200 ppm of H 2 O 2 in 30 min. The findings demonstrate that AgPd/TiO 2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue ‘Providing sustainable catalytic solutions for a rapidly changing world’.


2018 ◽  
Vol 368 ◽  
pp. 237-247 ◽  
Author(s):  
Suyeon Quon ◽  
Deok Yeon Jo ◽  
Geun-Ho Han ◽  
Sang Soo Han ◽  
Myung-gi Seo ◽  
...  

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohit Srivastava ◽  
Ladislav Tyll

Purpose This paper aims to develop a thorough understanding of industry-specific networking behaviour on the internationalization performance of Czech small and medium enterprises (SMEs). Design/methodology/approach The authors used a profile deviation-ideal profile methodology to explore the ideal networking behaviour profile of different industries. The authors argue that firms adhering to ideal profiles performed well in the international market, while firms deviating from the ideal profile performed poorly. Data were collected through an online questionnaire specifically targeted at Czech SME executives. The authors attempted to explore these issues by using four aspects of networking behaviour to test the ideal networking behaviour profile of five different industries (automotive, telecommunications, construction, audit and finance and transportation). Findings The authors have identified different ideal networking behaviour profile for three industries, which underpinned supported the hypothesis that each dimension of networking behaviour should be fine-tuned for each sector to achieve to attain maximum benefits and performance in the international market. Originality/value Although previous studies supported the role of networking behaviour in improving internationalization performance, multiple studies had also provided conflicting results on how networking affects different industries and it is unclear how and why networking affects these various industries differently. The authors believe that the results research provides empirical evidence in proving that different networking dimensions should be fine-tuned as per industry to achieve the highest performance in the international market. The authors believe that the findings broaden the current understanding of the role of networks in the internationalization. The authors believe that the findings extend the current understanding of the role of networks in the internationalization of SMEs.


2021 ◽  
Author(s):  
Joseph Brehm ◽  
Richard J. Lewis ◽  
David J. Morgan ◽  
Thomas E. Davies ◽  
Graham J. Hutchings

AbstractThe direct synthesis of H2O2 from molecular H2 and O2 over AuPd catalysts, supported on TiO2 and prepared via an excess chloride co-impregnation procedure is investigated. The role of Au:Pd ratio on the catalytic activity towards H2O2 formation and its subsequent degradation is evaluated under conditions that have previously been found to be optimal for the formation of H2O2. The combination of relatively small nanoparticles, of mixed Pd-oxidation state is shown to correlate with enhanced catalytic performance. Subsequently, a detailed study of catalytic activity towards H2O2 synthesis as a function of AuPd loading was conducted, with a direct correlation between catalytic activity and metal loading observed. Graphic Abstract


2020 ◽  
Vol 385 ◽  
pp. 21-29 ◽  
Author(s):  
Pengfei Tian ◽  
Fuzhen Xuan ◽  
Doudou Ding ◽  
Yang Sun ◽  
Xingyan Xu ◽  
...  

Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


2017 ◽  
Vol 16 (2) ◽  
pp. 61-76 ◽  
Author(s):  
Anaïs Thibault Landry ◽  
Marylène Gagné ◽  
Jacques Forest ◽  
Sylvie Guerrero ◽  
Michel Séguin ◽  
...  

Abstract. To this day, researchers are debating the adequacy of using financial incentives to bolster performance in work settings. Our goal was to contribute to current understanding by considering the moderating role of distributive justice in the relation between financial incentives, motivation, and performance. Based on self-determination theory, we hypothesized that when bonuses are fairly distributed, using financial incentives makes employees feel more competent and autonomous, which in turn fosters greater autonomous motivation and lower controlled motivation, and better work performance. Results from path analyses in three samples supported our hypotheses, suggesting that the effect of financial incentives is contextual, and that compensation plans using financial incentives and bonuses can be effective when properly managed.


Sign in / Sign up

Export Citation Format

Share Document