scholarly journals Influence of Mesenchymal Stem Cell Sources on Their Regenerative Capacities on Different Surfaces

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 481
Author(s):  
Arkaitz Mucientes ◽  
Eva Herranz ◽  
Enrique Moro ◽  
Aranzazu González-Corchón ◽  
María Jesús Peña-Soria ◽  
...  

Current gold-standard strategies for bone regeneration do not achieve the optimal recovery of bone biomechanical properties. To bypass these limitations, tissue engineering techniques based on hybrid materials made up of osteoprogenitor cells—such as mesenchymal stem cells (MSCs)—and bioactive ceramic scaffolds—such as calcium phosphate-based (CaPs) bioceramics—seem promising. The biological properties of MSCs are influenced by the tissue source. This study aims to define the optimal MSC source and construct (i.e., the MSC–CaP combination) for clinical application in bone regeneration. A previous iTRAQ analysis generated the hypothesis that anatomical proximity to bone has a direct effect on MSC phenotype. MSCs were isolated from adipose tissue, bone marrow, and dental pulp, then cultured both on a plastic surface and on CaPs (hydroxyapatite and β-tricalcium phosphate), to compare their biological features. On plastic, MSCs isolated from dental pulp (DPSCs) presented the highest proliferation capacity and the greatest osteogenic potential. On both CaPs, DPSCs demonstrated the greatest capacity to colonise the bioceramics. Furthermore, the results demonstrated a trend that DPSCs had the most robust increase in ALP activity. Regarding CaPs, β-tricalcium phosphate obtained the best viability results, while hydroxyapatite had the highest ALP activity values. Therefore, we propose DPSCs as suitable MSCs for cell-based bone regeneration strategies.

Author(s):  
Arkaitz Mucientes ◽  
Eva Herranz ◽  
Enrique Moro ◽  
Aranzazu González-Corchón ◽  
María Jesús Peña-Soria ◽  
...  

Bone innate ability to repair without scaring is surpassed by major bone damage. Current gold-standard strategies do not achieve a full recovery of bone biomechanical properties. To bypass these limitations, tissue engineering techniques based on hybrid materials made up of osteoprogenitor cells, like mesenchymal stem cells (MSCs), and bioactive ceramic scaffolds, like calcium phosphate-based (CaPs), are promising. Biological properties of the MSCs, are influenced by the tissue source. The aim of this study is to define the MSC source and construct (MSC and scaffold combination) most interesting for its clinical application in bone regeneration. iTRAQ generated the hypothesis that anatomical proximity to bone has a direct effect on MSC phenotype. MSCs were isolated from adipose tissue, bone marrow and dental pulp. MSCs were cultured both on plastic surface and on CaPs (hydroxyapatite and β-tricalcium phosphate) to compare their biological features. On plastic, MSCs isolated from dental pulp (DPSCs) were the MSCs with the highest proliferation capacity and the greatest osteogenic potential. On both CaPs, DPSCs are the MSCs with the greatest capacity to colonize bioceramics. Furthermore, results show a trend for DPSCs are the MSCs with the most robust increase in the ALP activity. We propose DPSCs as a suitable MSCs for bone regeneration cell-based strategies.What do you want to do ?New mailCopy


2020 ◽  
Author(s):  
Arkaitz Mucientes ◽  
Eva Herranz ◽  
Enrique Moro ◽  
Aranzazu González-Corchón ◽  
María Jesús Peña-Soria ◽  
...  

Abstract Background: Bone innate ability to repair without scaring is surpassed by major bone damage. Current gold-standard strategies do not achieve a full recovery of the bone biomechanical properties. To bypass these limitations, tissue engineering techniques based on hybrid materials made up of osteoprogenitor cells, like mesenchymal stem cells (MSCs), and bioactive ceramic scaffolds, like calcium phosphate-based (CaPs), are promising. Biological properties of the MSCs, including osteogenic potential, are influenced by the tissue source. The aim of this study is to define the MSC source and construct (MSC and scaffold combination) most interesting for its clinical application in the context of bone regeneration.Methods: MSCs of 9 healthy donors were isolated from adipose tissue, bone marrow and dental pulp. MSCs were cultured both on plastic surface and on CaPs (hydroxyapatite and β-tricalcium phosphate) to compare their biological features: proliferation rate, osteogenic potential, cell viability and activity, ability to colonize the CaPs and ALP activity. Results: iTRAQ results generated the hypothesis that anatomical proximity to bone has a direct effect on MSC phenotype. On plastic, MSCs isolated from dental pulp (DPSCs) were the MSCs with the highest proliferation capacity and the greatest osteogenic potential. On both CaPs, DPSCs are the MSCs with the greatest capacity to colonize bioceramics. Furthermore, results show a trend for DPSCs are the MSCs with the most robust increase in the ALP activity.Conclusion: Based in our results, we propose DPSCs as a suitable MSCs for bone/dental regeneration cell-based strategies.


2020 ◽  
Vol 3 (3) ◽  
pp. 267-278
Author(s):  
Alan Jesus ◽  
Adriano Jesus ◽  
Flávia Lima ◽  
Luiz Freitas ◽  
Cássio Meira ◽  
...  

Autogenous bone grafting is needed in some bone tissue defects; however, it causes secondary surgical wounds and morbidity. Tissue bioengineering may be an alternative approach for bone regeneration. Here we investigated the osteogenic potential of dental pulp stem cells from deciduous teeth (DPSC) in association with a Ricinus bone compound (RBC) in a model of bone defect. The influence of the biomaterial RBC on the proliferation and osteogenic differentiation of DPSC was assessed in vitro by MTT metabolism and alizarin red staining, respectively. The morphologic analysis was performed using the optic and scanning electron (SEM) microscopies. For the in vivo study, 54 Wistar rats submitted to calvarial defects were filled with RBC or RBC+DPSC. A control group had the defects filled only with blood clots. Analyses were performed 15, 30 and 60 days after treatment using digital radiography, optical microscopy, SEM and chemical analysis by electron dispersive spectroscopy. The Ricinus bone compound (RBC) did not inhibit the osteogenic differentiation in vitro. No spontaneous regeneration was observed in the control group. The area of the calvarial defect of the RBC+DPSC group showed greater radiopacity on day 15. The RBC presented no reabsorption, was biocompatible and showed osteointegration, working as a mechanical filling. Only sparse ossification areas were found and those were larger and more developed on the RBC+DPSC group when compared to animals treated only with RBC. RBC in association with DPSC is a promising combination for applications in bone regeneration.  


2019 ◽  
Vol 14 (2) ◽  
pp. 102 ◽  
Author(s):  
AliceK Abdel Aleem ◽  
EmanE.A. Mohammed ◽  
Mohamed El-Zawahry ◽  
Abdel RazikH Farrag ◽  
NahlaN Abdel Aziz ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chuanchuan Zheng ◽  
Shokouh Attarilar ◽  
Kai Li ◽  
Chong Wang ◽  
Jia Liu ◽  
...  

In this study, a β-tricalcium phosphate (β-TCP)/poly (lactic-co-glycolic acid) (PLGA) bone tissue scaffold was loaded with osteogenesis-promoting drug HA15 and constructed by three-dimensional (3D) printing technology. This drug delivery system with favorable biomechanical properties, bone conduction function, and local release of osteogenic drugs could provide the basis for the treatment of bone defects. The biomechanical properties of the scaffold were investigated by compressive testing, showing comparable biomechanical properties with cancellous bone tissue. Furthermore, the microstructure, pore morphology, and condition were studied. Moreover, the drug release concentration, the effect of anti-tuberculosis drugs in vitro and in rabbit radial defects, and the ability of the scaffold to repair the defects were studied. The results show that the scaffold loaded with HA15 can promote cell differentiation into osteoblasts in vitro, targeting HSPA5. The micro-computed tomography scans showed that after 12 weeks of scaffold implantation, the defect of the rabbit radius was repaired and the peripheral blood vessels were regenerated. Thus, HA15 can target HSPA5 to inhibit endoplasmic reticulum stress which finally leads to promotion of osteogenesis, bone regeneration, and angiogenesis in the rabbit bone defect model. Overall, the 3D-printed β-TCP/PLGA-loaded HA15 bone tissue scaffold can be used as a substitute material for the treatment of bone defects because of its unique biomechanical properties and bone conductivity.


2021 ◽  
Author(s):  
Ya-Hui Chan ◽  
Kuo-Ning Ho ◽  
Yu-Chieh Lee ◽  
Meng-Jung Chou ◽  
Wei-Zhen Lew ◽  
...  

Abstract Background:Mesenchymal stem cell (MSC)-based tissue engineering plays a major role in regenerative medicine. However, the efficiency of MSC transplantation and survival of engrafted stem cells remain challenging. Melatonin can regulate MSC biology. However, its function in the osteogenic differentiation of dental pulp-derived MSCs (DPSCs) remains unclear. We investigated the effects and mechanisms of melatonin preconditioning on the osteogenic differentiation and bone regeneration capacities of DPSCs.Methods:The biological effects and signaling mechanisms of melatonin with different concentrations on DPSCs were evaluated using a proliferation assay, the quantitative alkaline phosphatase (ALP) activity, Alizarin red staining, a real-time polymerase chain reaction, and a western blot in vitro cell culture model. The in vivo bone regeneration capacities were assessed among empty control, MBCP, MBCP+DPSCs, and MBCP+DPSCs+melatonin preconditioning in four-created calvarial bone defects by using micro–computed tomographic, histological, histomorphometric, and immunofluorescence analyses after 4 and 8 weeks of healing.Results:In vitro experiments revealed that melatonin (1, 10, and 100 μM) significantly and concentration-dependently promoted proliferation, surface marker expression (CD 146), ALP activity and extracellular calcium deposition, and osteogenic gene expression of DPSCs (p < 0.05). Melatonin activated the phosphorylation of RUNX-2 and OCN and inhibited COX-2/NF-κB phosphorylation. Furthermore, the phosphorylation of mitogen-activated protein kinase (MAPK) P38/ERK signaling was significantly increased in DPSCs treated with 100 μM melatonin, and their inhibitors significantly decreased osteogenic differentiation. In vivo experiments demonstrated that bone defects implanted with MBCP bone-grafting materials and melatonin-preconditioned melatonin exhibited significantly greater bone volume fraction, trabecular bone structural modeling, new bone formation, and osteogenesis-related protein expression than the other three groups at 4 and 8 weeks postoperatively (p < 0.05).Conclusions:These results suggest that melatonin promotes the proliferation and osteogenic differentiation of DPSCs by regulating COX-2/NF-κB and p38/ERK MAPK signaling pathways. Preconditioning DPSCs with melatonin before transplantation can efficiently enhance MSC function and regenerative capacities.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yongsun Kim ◽  
Seung Hoon Lee ◽  
Byung-jae Kang ◽  
Wan Hee Kim ◽  
Hui-suk Yun ◽  
...  

Multipotent mesenchymal stem cells (MSCs) and MSC sheets have effective potentials of bone regeneration. Composite polymer/ceramic scaffolds such as poly-ε-caprolactone (PCL)/β-tricalcium phosphate (β-TCP) are widely used to repair large bone defects. The present study investigated thein vitroosteogenic potential of canine adipose-derived MSCs (Ad-MSCs) and Ad-MSC sheets. Composite PCL/β-TCP scaffolds seeded with Ad-MSCs or wrapped with osteogenic Ad-MSC sheets (OCS) were also fabricated and their osteogenic potential was assessed following transplantation into critical-sized bone defects in dogs. The alkaline phosphatase (ALP) activity of osteogenic Ad-MSCs (O-MSCs) and OCS was significantly higher than that of undifferentiated Ad-MSCs (U-MSCs). TheALP, runt-related transcription factor 2, osteopontin,andbone morphogenetic protein 7 mRNA levels were upregulated in O-MSCs and OCS as compared to U-MSCs. In a segmental bone defect, the amount of newly formed bone was greater in PCL/β-TCP/OCS and PCL/β-TCP/O-MSCs/OCS than in the other groups. The OCS exhibit strong osteogenic capacity, and OCS combined with a PCL/β-TCP composite scaffold stimulated new bone formation in a critical-sized bone defect. These results suggest that the PCL/β-TCP/OCS composite has potential clinical applications in bone regeneration and can be used as an alternative treatment modality in bone tissue engineering.


2009 ◽  
Vol 35 (1) ◽  
pp. 28-36 ◽  
Author(s):  
Leonidas Podaropoulos ◽  
Alexander A. Veis ◽  
Serafim Papadimitriou ◽  
Constantinos Alexandridis ◽  
Demos Kalyvas

Abstract The aim of the study was the histomorphometric comparison of the osteogenic potential of β-tricalcium phosphate (β-TCP) alone or in a calcium sulfate matrix. Three round defects, 10 mm (diameter) × 5 mm (depth), were created on each iliac crest of 4 dogs. The defects were divided into 3 groups. Ten defects were filled with β-TCP in a calcium sulfate (CS) matrix (Fortoss Vital; group A), 10 defects were filled with β-TCP alone (Fortoss Resorb; group B), and 4 defects were left ungrafted to heal spontaneously (group C). All defects were left to heal for 4 months without the use of a barrier membrane. Histologic evaluation and morphometric analysis of undecalcified slides was performed using the areas of regenerated bone and graft remnants. All sites exhibited uneventful healing. In group A sites (β-TCP/CS), complete bone formation was observed in all specimens, graft granules dominated the area, and a thin bridge of cortical bone was covering the defect. Group B (β-TCP) defects were partially filled with new bone, the graft particles still dominated the area, while the outer cortex was not restored. In the ungrafted sites (group C), incomplete new bone formation was observed. The outer dense cortical layer was restored in a lower level, near the base of the defect. The statistical analysis revealed that the mean percentage of new bone regeneration in group A was higher than in group B (49.38% and 40.31%, respectively). A statistically significant difference existed between the 2 groups. The beta-TCP/CS group exhibited significantly higher new bone regeneration according to a marginal probability value (P = .004 &lt; .05). The use of β-TCP in a CS matrix produced significantly more vital new bone fill and preserved bone dimensions compared with the use of β-TCP alone.


Sign in / Sign up

Export Citation Format

Share Document