scholarly journals Heme Oxygenase-1 Contributes to Both the Engulfment and the Anti-Inflammatory Program of Macrophages during Efferocytosis

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 652
Author(s):  
Éva Fige ◽  
Judit Szendrei ◽  
László Sós ◽  
Izabela Kraszewska ◽  
László Potor ◽  
...  

Heme oxygenase-1 (HO-1) plays a vital role in the catabolism of heme and yields equimolar amounts of biliverdin, carbon monoxide, and free iron. We report that macrophages engulfing either the low amount of heme-containing apoptotic thymocytes or the high amount of heme-containing eryptotic red blood cells (eRBCs) strongly upregulate HO-1. The induction by apoptotic thymocytes is dependent on soluble signals, which do not include adenylate cyclase activators but induce the p38 mitogen-activated protein (MAP) kinase pathway, while in the case of eRBCs, it is cell uptake-dependent. Both pathways might involve the regulation of BTB and CNC homology 1 (BACH1), which is the repressor transcription regulator factor of the HO-1 gene. Long-term continuous efferocytosis of apoptotic thymocytes is not affected by the loss of HO-1, but that of eRBCs is inhibited. This latter is related to an internal signaling pathway that prevents the efferocytosis-induced increase in Rac1 activity. While the uptake of apoptotic cells suppressed the basal pro-inflammatory cytokine production in wild-type macrophages, in the absence of HO-1, engulfing macrophages produced enhanced amounts of pro-inflammatory cytokines. Our data demonstrate that HO-1 is required for both the engulfment and the anti-inflammatory response parts of the efferocytosis program.

2000 ◽  
Vol 68 (10) ◽  
pp. 5998-6004 ◽  
Author(s):  
Dorota Czerucka ◽  
Stephanie Dahan ◽  
Baharia Mograbi ◽  
Bernard Rossi ◽  
Patrick Rampal

ABSTRACT Use of the nonpathogenic yeast Saccharomyces boulardiiin the treatment of infectious diarrhea has attracted growing interest. The present study designed to investigate the effect of this yeast on enteropathogenic Escherichia coli (EPEC)-associated disease demonstrates that S. boulardii abrogated the alterations induced by an EPEC strain on transepithelial resistance, [3H]inulin flux, and ZO-1 distribution in T84 cells. Moreover, EPEC-mediated apoptosis of epithelial cells was delayed in the presence of S. boulardii. The yeast did not modify the number of adherent bacteria but lowered by 50% the number of intracellular bacteria. Infection by EPEC induced tyrosine phosphorylation of several proteins in T84 cells, including p46 and p52 SHC isoforms, that was attenuated in the presence of S. boulardii. Similarly, EPEC-induced activation of the ERK1/2 mitogen-activated protein (MAP) kinase pathway was diminished in the presence of the yeast. Interestingly, inhibition of the ERK1/2 pathway with the specific inhibitor PD 98059 decreased EPEC internalization, suggesting that modulation of the ERK1/2 MAP pathway might account for the lowering of the number of intracellular bacteria observed in the presence of S. boulardii. Altogether, this study demonstrated that S. boulardii exerts a protective effect on epithelial cells after EPEC adhesion by modulating the signaling pathway induced by bacterial infection.


2006 ◽  
Vol 106 (3) ◽  
pp. 364-371 ◽  
Author(s):  
Byung-Chul Kim ◽  
Joung-Woo Choi ◽  
Hye-Young Hong ◽  
Sin-Ae Lee ◽  
Suntaek Hong ◽  
...  

2004 ◽  
Vol 142 (7) ◽  
pp. 1191-1199 ◽  
Author(s):  
María José Alcaraz ◽  
Ana María Vicente ◽  
Amparo Araico ◽  
José N Dominguez ◽  
María Carmen Terencio ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jinming Peng ◽  
Tianyong Hu ◽  
Jin Li ◽  
Jing Du ◽  
Kerui Zhu ◽  
...  

Shepherd’s purse (Capsella bursa-pastoris (L.) Medik.), a wild herb as a traditional herbal medicine, has been proved with multiple healthy benefits. In this study, the chemical constituents of shepherd’s purse were identified by UPLC-QTOF-MS/MS. The antioxidative and anti-inflammatory potential of shepherd’s purse extract (SPE) were also investigated applying lipopolysaccharide- (LPS-) induced inflammation in RAW 264.7 macrophages and a carrageenan-induced mice paw edema model. Twenty-four chemical compounds were identified mainly including phenolic acids and flavonoids. The data also indicated SPE inhibited the productions of NO, PGE2, TNF-α, and IL-6 stimulated with LPS. In addition, SPE inhibited the increase of reactive oxygen species (ROS) and upregulated the expression of heme oxygenase-1 (HO-1). We further found that SPE inhibited the phosphorylation of P38 MAPK and activation of NF-κB. In vivo mice model also indicated that SPE showed strong antioxidative and anti-inflammatory activity.


2001 ◽  
Vol 33 (1-2) ◽  
pp. 1160-1161 ◽  
Author(s):  
S.G Tullius ◽  
M Nieminen-Kelhä ◽  
A Reutzel-Selke ◽  
U Bachmann ◽  
S Jonas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document