scholarly journals Integrated Action of Autophagy and Adipose Tissue Triglyceride Lipase Ameliorates Diet-Induced Hepatic Steatosis in Liver-Specific PLIN2 Knockout Mice

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1016
Author(s):  
John D. Griffin ◽  
Eloy Bejarano ◽  
Xiang-Dong Wang ◽  
Andrew S. Greenberg

An imbalance in the storage and breakdown of hepatic lipid droplet (LD) triglyceride (TAG) leads to hepatic steatosis, a defining feature of non-alcoholic fatty liver disease (NAFLD). The two primary cellular pathways regulating hepatic TAG catabolism are lipolysis, initiated by adipose triglyceride lipase (ATGL), and lipophagy. Each of these processes requires access to the LD surface to initiate LD TAG catabolism. Ablation of perilipin 2 (PLIN2), the most abundant lipid droplet-associated protein in steatotic liver, protects mice from diet-induced NAFLD. However, the mechanisms underlaying this protection are unclear. We tested the contributions of ATGL and lipophagy mediated lipolysis to reduced hepatic TAG in mice with liver-specific PLIN2 deficiency (PLIN2LKO) fed a Western-type diet for 12 weeks. We observed enhanced autophagy in the absence of PLIN2, as determined by ex vivo p62 flux, as well as increased p62- and LC3-positive autophagic vesicles in PLIN2LKO livers and isolated primary hepatocytes. Increased levels of autophagy correlated with significant increases in cellular fatty acid (FA) oxidation in PLIN2LKO hepatocytes. We observed that inhibition of either autophagy or ATGL blunted the increased FA oxidation in PLIN2LKO hepatocytes. Additionally, combined inhibition of ATGL and autophagy reduced FA oxidation to the same extent as treatment with either inhibitor alone. In sum, these studies show that protection against NAFLD in the absence of hepatic PLIN2 is driven by the integrated actions of both ATGL and lipophagy.

Children ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 290
Author(s):  
Ahlia Sekkarie ◽  
Jean A. Welsh ◽  
Kate Northstone ◽  
Aryeh D. Stein ◽  
Usha Ramakrishnan ◽  
...  

(1) Background: High sugar intake is prevalent among children and is associated with non-alcoholic fatty liver disease (NAFLD). The purpose of this study is to determine if a high intake of free sugars and sugary beverages (SB) in childhood is associated with NAFLD in adulthood; (2) Methods: At 24 years, 3095 participants were assessed for severe hepatic steatosis (controlled attenuation parameter >280 dB/m) and had dietary data collected via a food frequency questionnaire at age three years. Multiple logistic regression models adjusted for total energy intake, potential confounders, and a mediator (offspring body mass index (BMI) at 24 years); (3) Results: Per quintile increase of free sugar intake association with severe hepatic steatosis at 24 years after adjusting for total energy was odds ratio (OR):1.07 (95% CL: 0.99–1.17). Comparing the lowest vs. the highest free sugar consumers, the association was OR:1.28 (95% CL: 0.88–1.85) and 1.14 (0.72, 1.82) after full adjustment. The OR for high SB consumption (>2/day) compared to <1/day was 1.23 (95% CL: 0.82–1.84) and OR: 0.98 (95% CL: 0.60–1.60) after full adjustment; (4) Conclusions: High free sugar and SB intake at three years were positively but weakly associated with severe hepatic steatosis at 24 years. These associations were completely attenuated after adjusting for confounders and 24-year BMI.


2019 ◽  
Vol 20 (9) ◽  
pp. 2325 ◽  
Author(s):  
Hua Li ◽  
Wonbeak Yoo ◽  
Hye-Mi Park ◽  
Soo-Youn Lim ◽  
Dong-Ha Shin ◽  
...  

Arazyme, a metalloprotease from the spider Nephila clavata, exerts hepatoprotective activity in CCL4-induced acute hepatic injury. This study investigated the hepatoprotective effects in high-fat diet (HFD)-induced non-alcoholic fatty liver disease-like C57BL/6J mice. The mice were randomly divided into four groups (n = 10/group): the normal diet group, the HFD group, the arazyme group (HFD with 0.025% arazyme), and the milk thistle (MT) group (HFD with 0.1% MT). Dietary supplementation of arazyme for 13 weeks significantly lowered plasma triglyceride (TG) and non-esterified fatty acid levels. Suppression of HFD-induced hepatic steatosis in the arazyme group was caused by the reduced hepatic TG and total cholesterol (TC) contents. Arazyme supplementation decreased hepatic lipogenesis-related gene expression, sterol regulatory element-binding transcription protein 1 (Srebf1), fatty acid synthase (Fas), acetyl-CoA carboxylase 1 (Acc1), stearoyl-CoA desaturase-1 (Scd1), Scd2, glycerol-3-phosphate acyltransferase (Gpam), diacylglycerol O-acyltransferase 1 (Dgat1), and Dgat2. Arazyme directly reduced palmitic acid (PA)-induced TG accumulation in HepG2 cells. Arazyme suppressed macrophage infiltration and tumor necrosis factor α (Tnfa), interleukin-1β (Il1b), and chemokine-ligand-2 (Ccl2) expression in the liver, and inhibited secretion of TNFα and expression of inflammatory mediators, Tnfa, Il1b, Ccl2, Ccl3, Ccl4, and Ccl5, in PA-induced RAW264.7 cells. Arazyme effectively protected hepatic steatosis and steatohepatitis by inhibiting SREBP-1-mediated lipid accumulation and macrophage-mediated inflammation.


Sign in / Sign up

Export Citation Format

Share Document