scholarly journals The Role of microRNAs in NK Cell Development and Function

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2020
Author(s):  
Arash Nanbakhsh ◽  
Subramaniam Malarkannan

The clinical use of natural killer (NK) cells is at the forefront of cellular therapy. NK cells possess exceptional antitumor cytotoxic potentials and can generate significant levels of proinflammatory cytokines. Multiple genetic manipulations are being tested to augment the anti-tumor functions of NK cells. One such method involves identifying and altering microRNAs (miRNAs) that play essential roles in the development and effector functions of NK cells. Unique miRNAs can bind and inactivate mRNAs that code for cytotoxic proteins. MicroRNAs, such as the members of the Mirc11 cistron, downmodulate ubiquitin ligases that are central to the activation of the obligatory transcription factors responsible for the production of inflammatory cytokines. These studies reveal potential opportunities to post-translationally enhance the effector functions of human NK cells while reducing unwanted outcomes. Here, we summarize the recent advances made on miRNAs in murine and human NK cells and their relevance to NK cell development and functions.

2008 ◽  
Vol 205 (10) ◽  
pp. 2419-2435 ◽  
Author(s):  
Hailong Guo ◽  
Asanga Samarakoon ◽  
Bart Vanhaesebroeck ◽  
Subramaniam Malarkannan

Phosphatidylinositol 3-kinases (PI3Ks) play a critical role in regulating B cell receptor– and T cell receptor–mediated signaling. However, their role in natural killer (NK) cell development and functions is not well understood. Using mice expressing p110δD910A, a catalytically inactive p110δ, we show that these mice had reduced NK cellularity, defective Ly49C and Ly49I NK subset maturation, and decreased CD27High NK numbers. p110δ inactivation marginally impaired NK-mediated cytotoxicity against tumor cells in vitro and in vivo. However, NKG2D, Ly49D, and NK1.1 receptor–mediated cytokine and chemokine generation by NK cells was severely affected in these mice. Further, p110δD910A/D910A NK cell–mediated antiviral responses through natural cytotoxicity receptor 1 were reduced. Analysis of signaling events demonstrates that p110δD910A/D910A NK cells had a reduced c-Jun N-terminal kinase 1/2 phosphorylation in response to NKG2D-mediated activation. These results reveal a previously unrecognized role of PI3K-p110δ in NK cell development and effector functions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Huang ◽  
Jiacheng Bi

Natural killer (NK) cells are cytotoxic innate lymphocytes that play an important role in immune surveillance. The development, maturation and effector functions of NK cells are orchestrated by the T-box transcription factor T-bet, whose expression is induced by cytokines such as IFN-γ, IL-12, IL-15 and IL-21 through the respective cytokine receptors and downstream JAK/STATs or PI3K-AKT-mTORC1 signaling pathways. In this review, we aim to discuss the expression and regulation of T-bet in NK cells, the role of T-bet in mouse NK cell development, maturation, and function, as well as the role of T-bet in acute, chronic infection, inflammation, autoimmune diseases and tumors.


Blood ◽  
2013 ◽  
Vol 121 (2) ◽  
pp. 286-297 ◽  
Author(s):  
Karsten Sauer ◽  
Eugene Park ◽  
Sabine Siegemund ◽  
Anthony R. French ◽  
Joseph A. Wahle ◽  
...  

Abstract Natural killer (NK) cells have important functions in cancer immunosurveillance, BM allograft rejection, fighting infections, tissue homeostasis, and reproduction. NK cell–based therapies are promising treatments for blood cancers. Overcoming their currently limited efficacy requires a better understanding of the molecular mechanisms controlling NK cell development and dampening their effector functions. NK cells recognize the loss of self-antigens or up-regulation of stress-induced ligands on pathogen-infected or tumor cells through invariant NK cell receptors (NKRs), and then kill such stressed cells. Two second-messenger pathways downstream of NKRs are required for NK cell maturation and effector responses: PIP3 generation by PI3K and generation of diacylglycerol and IP3 by phospholipase-Cγ (PLCγ). In the present study, we identify a novel role for the phosphorylated IP3 metabolite inositol (1,3,4,5)tetrakisphosphate (IP4) in NK cells. IP4 promotes NK cell terminal differentiation and acquisition of a mature NKR repertoire. However, in mature NK cells, IP4 limits NKR-induced IFNγ secretion, granule exocytosis, and target-cell killing, in part by inhibiting the PIP3 effector-kinase Akt. This identifies IP4 as an important novel regulator of NK cell development and function and expands our understanding of the therapeutically important mechanisms dampening NK cell responses. Our results further suggest that PI3K regulation by soluble IP4 is a broadly important signaling paradigm.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Kiekens ◽  
Wouter Van Loocke ◽  
Sylvie Taveirne ◽  
Sigrid Wahlen ◽  
Eva Persyn ◽  
...  

T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary. Here, we ectopically expressed either T-BET or EOMES in human hematopoietic progenitor cells. Combined transcriptome, chromatin accessibility and protein expression analyses revealed that T-BET or EOMES epigenetically represses hematopoietic stem cell quiescence and non-NK lineage differentiation genes, while activating an NK cell-specific transcriptome and thereby drastically accelerating NK cell differentiation. In this model, the effects of T-BET and EOMES are largely overlapping, yet EOMES shows a superior role in early NK cell maturation and induces faster NK receptor and enhanced CD16 expression. T-BET particularly controls transcription of terminal maturation markers and epigenetically controls strong induction of KIR expression. Finally, NK cells generated upon T-BET or EOMES overexpression display improved functionality, including increased IFN-γ production and killing, and especially EOMES overexpression NK cells have enhanced antibody-dependent cellular cytotoxicity. Our findings reveal novel insights on the regulatory role of T-BET and EOMES in human NK cell maturation and function, which is essential to further understand human NK cell biology and to optimize adoptive NK cell therapies.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2567-2567
Author(s):  
Eileen Hu ◽  
Jessica Waibl-Polania ◽  
Frank Frissora ◽  
Larry State Beaver ◽  
Kevan Zapolnik ◽  
...  

Abstract Introduction: While key regulators of early NK cell development and differentiation have been identified, few studies have looked at transcription factor (TF) dynamics and regulatory interactions during subsequent stages of NK cell maturation. Epigenetic landscapes are highly dynamic during cellular differentiation, with TFs playing an important role in the establishment and activation of specific DNA elements, such as enhancers, and subsequent programming of gene expression. ETS1 is a TF that is expressed in adult immune tissues and is critical for the development of lymphoid cells. A role for ETS1 has been described in early NK cell development by activating core transcriptional regulators such as T-BET and ID2. However, despite its continual expression in subsequent stages of NK maturation, the role of ETS1 in NK maturation is not well characterized. Methods and Results: We used FACS to isolate purified human NK cells at various maturation stages as established previously (Freud et. al. Cell Reports, 2016, 16:379-91), ranging from intermediate precursors (Stage 3) through to fully developed and mature peripheral NK cells (Stage 6). Epigenetic programming of cells during lineage maturation allows us to identify critical TFs that are active at each stage of development. We employed Illumina EPIC/850K methylation arrays and RNA sequencing to interrogate epigenetic changes at regulatory elements and TF dynamics at multiple stages along the NK developmental axis. Analysis of TF recognition motifs within hypomethylated regions revealed strong enrichment of specific motif sequences implicating T-box (T-BET and Eomes), along with RUNX and ETS TF families in specific programming of epigenetic patterns during NK development. In studying the expression of TFs that potentially bind these motifs, ETS1 exhibited the highest and most consistent expression throughout NK development. Interestingly, despite consistently high expression, ETS motifs were continually programmed throughout NK maturation, including a significant degree of modification between tonsillar Stages 4A to 4B, where NK cells acquire the ability to produce IFN-γ and significantly gain cytotoxic capability and functional maturity. Among the genes that are upregulated at this stage is the NK-cell-specific gene, NKp46. The progressive hypomethylation of regulatory regions enriched in ETS motifs led us to believe that ETS1 has a continuous role in full NK cell maturation. To test our hypothesis, we developed a novel genetically engineered mouse line with a NK cell intermediate stage-specific conditional deletion of Ets1 mediated by NKp46-driven Cre expression, NKp46-Cre-Ets1fl/fl (NKp46-Ets1fl/fl). This allowed us to study the role of ETS1 in the transition between immature and mature NK cell stages in vivo. Using a comprehensive NK cell development panel for multi-color flow cytometry, we found a drastic reduction of total NK cells in NKp46-Ets1fl/fl mice (n=7) compared to the Ets1fl/fl (n=7) and the NKp46-Cre (n=7) controls in bone marrow (3.2x104 ± 5.9x103, 2.9x105 ± 5.7x104, 2.6x105 ± 8.0x104 total NK cells respectively; p= 0.0007), spleen (3.1x104 ± 7.2x103, 1.2x106 ± 2.4x105, 1.5x106 ± 7.7x105 total NK cells respectively; p= 0.0091) and blood (21 ± 6, 385 ± 35, 185 ± 35 NK cells/uL whole blood respectively; p= 0.0001). Supporting our hypothesis, we indeed observed that while CD11b-/CD27+/- immature NK cell populations in our model are unaltered, the loss of ETS1 is associated with a decrease in CD11b+/CD27+/- mature NK cell populations. Conclusions: Our findings demonstrate that in addition to its role in early NK establishment, persistent ETS1 expression is important in intermediate differentiation stages in both human and murine NK cell development. This constitutes a significant step forward in understanding the role of ETS1 as a master transcriptional regulator in the entire NK cell developmental axis. Current studies are ongoing to dissect the mechanism by which ETS1 affects NK cell development and function in the NKp46-Ets1fl/fl mice. (*EH and JW are recipients of Pelotonia Graduate and Undergraduate student fellowships respectively and contributed equally to this work. This work was partly supported by OCRA, NIH R01 CA159296, NIH R01 CA208353, P01CA95426, R35 CA197734 and OSUCCC Leukemia Tissue Bank and Genetically Engineered Mouse Modeling Core supported by P30CA016058) Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 208 (13) ◽  
pp. 2717-2731 ◽  
Author(s):  
Natalie A. Bezman ◽  
Tirtha Chakraborty ◽  
Timothy Bender ◽  
Lewis L. Lanier

Natural killer (NK) and invariant NK T (iNKT) cells are critical in host defense against pathogens and for the initiation of adaptive immune responses. miRNAs play important roles in NK and iNKT cell development, maturation, and function, but the roles of specific miRNAs are unclear. We show that modulation of miR-150 expression levels has a differential effect on NK and iNKT cell development. Mice with a targeted deletion of miR-150 have an impaired, cell lineage–intrinsic defect in their ability to generate mature NK cells. Conversely, a gain-of-function miR-150 transgene promotes the development of NK cells, which display a more mature phenotype and are more responsive to activation. In contrast, overexpression of miR-150 results in a substantial reduction of iNKT cells in the thymus and in the peripheral lymphoid organs. The transcription factor c-Myb has been shown to be a direct target of miR-150. Our finding of increased NK cell and decreased iNKT cell frequencies in Myb heterozygous bone marrow chimeras suggests that miR-150 differentially controls the development of NK and iNKT cell lineages by targeting c-Myb.


Sign in / Sign up

Export Citation Format

Share Document