scholarly journals Atg5 Regulates Selective Autophagy of the Parental Macronucleus during Tetrahymena Sexual Reproduction

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3071
Author(s):  
Tao Bo ◽  
Yu Kang ◽  
Ya Liu ◽  
Jing Xu ◽  
Wei Wang

Nuclear autophagy is an important selective autophagy process. The selective autophagy of sexual development micronuclei (MICs) and the programmed nuclear degradation of parental macronucleus (paMAC) occur during sexual reproduction in Tetrahymena thermophila. The molecular regulatory mechanism of nuclear selective autophagy is unclear. In this study, the autophagy-related protein Atg5 was identified from T. thermophila. Atg5 was localized in the cytoplasm in the early sexual-development stage and was localized in the paMAC in the late sexual-development stage. During this stage, the degradation of meiotic products of MIC was delayed in atg5i mutants. Furthermore, paMAC was abnormally enlarged and delayed or failed to degrade. The expression level and lipidation of Atg8.2 significantly decreased in the mutants. All these results indicated that Atg5 was involved in the regulation of the selective autophagy of paMAC by regulating Atg8.2 in Tetrahymena.

Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 431
Author(s):  
Longxue Ma ◽  
Xu Li ◽  
Xiaoyun Ma ◽  
Qiang Yu ◽  
Xiaohua Yu ◽  
...  

Peanuts are frequently infected by Aspergillus strains and then contaminated by aflatoxins (AF), which brings out economic losses and health risks. AF production is affected by diverse environmental factors, especially water activity (aw). In this study, A. flavus was inoculated into peanuts with different aw (0.90, 0.95, and 0.99). Both AFB1 yield and conidia production showed the highest level in aw 0.90 treatment. Transcriptional level analyses indicated that AF biosynthesis genes, especially the middle- and later-stage genes, were significantly up-regulated in aw 0.90 than aw 0.95 and 0.99. AtfB could be the pivotal regulator response to aw variations, and could further regulate downstream genes, especially AF biosynthesis genes. The expressions of conidia genes and relevant regulators were also more up-regulated at aw 0.90 than aw 0.95 and 0.99, suggesting that the relative lower aw could increase A. flavus conidia development. Furthermore, transcription factors involved in sexual development and nitrogen metabolism were also modulated by different aw. This research partly clarified the regulatory mechanism of aw on AF biosynthesis and A. flavus development and it would supply some advice for AF prevention in food storage.


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Alejandro Saettone ◽  
Jyoti Garg ◽  
Jean-Philippe Lambert ◽  
Syed Nabeel-Shah ◽  
Marcelo Ponce ◽  
...  

2013 ◽  
Vol 94 ◽  
pp. 311-326 ◽  
Author(s):  
Jyoti Garg ◽  
Jean-Philippe Lambert ◽  
Abdel Karsou ◽  
Susanna Marquez ◽  
Syed Nabeel-Shah ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ardavan Farhadi ◽  
Wenxiao Cui ◽  
Huaiping Zheng ◽  
Shengkang Li ◽  
Yueling Zhang ◽  
...  

Crustacean culture has been developing rapidly in various parts of the world. Therefore, it is important to understand their reproductive biology. Insulin-like androgenic gland hormone (IAG) secreted from the androgenic gland (AG) is widely accepted as a key regulator of sexual differentiation in male crustaceans. However, recently several sex-related genes (i.e., CFSH, DEAD-box family, Tra-2, Sxl, Dsx, Fem-1, Sox gene family, Foxl2, and Dmrt gene family) have been identified via transcriptomic analysis in crustaceans, indicating that sexual differentiation in crustaceans is more complicated than previously expected. It has been found that several non-coding RNAs (i.e., miRNAs, lncRNAs, and piRNAs) and IAG receptors may be involved in the sexual development of decapods. Identification and study of the regulation mechanism of sex-related genes, non-coding RNAs, and IAG receptors will provide valuable information regarding sexual development in decapods. In this review, the roles of hormonal and genetic factors in both males and females are discussed. In males, crustacean female sex hormone (CFSH), Sxl, Dmrt gene family, Dsx, Sox gene family, GEM, Fem-1, l-GnRH-III, and corazonin play important roles in IAG regulation in the “eyestalk-IAG-testis” endocrine axis. Unlike males, the regulation mechanism and interaction of sexual genes are relatively unknown in females. However, CFSH, IAG, Fem-1, FAMeT, Slo, UCHLs, Erk2, Cdc2, EGFR, Vg, VgR, and VIH seem to play crucial roles during ovarian development. This study summarizes the available information in the field, highlights gaps, and lays the foundations for further studies and a better understanding of the regulatory mechanism of sexual development in decapods.


2021 ◽  
Vol 7 (33) ◽  
pp. eabi6582
Author(s):  
Tao Fu ◽  
Mingfang Zhang ◽  
Zixuan Zhou ◽  
Ping Wu ◽  
Chao Peng ◽  
...  

The recruitment of Unc-51-like kinase and TANK-binding kinase 1 complexes is essential for Nuclear dot protein 52-mediated selective autophagy and relies on the specific association of NDP52, RB1-inducible coiled-coil protein 1, and Nak-associated protein 1 (5-azacytidine-induced protein 2, AZI2). However, the underlying molecular mechanism remains elusive. Here, we find that except for the NDP52 SKIP carboxyl homology (SKICH)/RB1CC1 coiled-coil interaction, the LC3-interacting region of NDP52 can directly interact with the RB1CC1 Claw domain, as that of NAP1 FIP200-binding region (FIR). The determined crystal structures of NDP52 SKICH/RB1CC1 complex, NAP1 FIR/RB1CC1 complex, and the related NAP1 FIR/Gamma-aminobutyric acid receptor-associated protein complex not only elucidate the molecular bases underpinning the interactions of RB1CC1 with NDP52 and NAP1 but also reveal that RB1CC1 Claw and Autophagy-related protein 8 family proteins are competitive in binding to NAP1 and NDP52. Overall, our findings provide mechanistic insights into the interactions of NDP52, NAP1 with RB1CC1 and ATG8 family proteins.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Zheng Wang ◽  
Cristina Miguel-Rojas ◽  
Francesc Lopez-Giraldez ◽  
Oded Yarden ◽  
Frances Trail ◽  
...  

ABSTRACTFungal spores germinate and undergo vegetative growth, leading to either asexual or sexual reproductive dispersal. Previous research has indicated that among developmental regulatory genes, expression is conserved across nutritional environments, whereas pathways for carbon and nitrogen metabolism appear highly responsive—perhaps to accommodate differential nutritive processing. To comprehensively investigate conidial germination and the adaptive life history decision-making underlying these two modes of reproduction, we profiled transcription ofNeurospora crassagerminating on two media: synthetic Bird medium, designed to promote asexual reproduction; and a natural maple sap medium, on which both asexual reproduction and sexual reproduction manifest. A later start to germination but faster development was observed on synthetic medium. Metabolic genes exhibited altered expression in response to nutrients—at least 34% of the genes in the genome were significantly downregulated during the first two stages of conidial germination on synthetic medium. Knockouts of genes exhibiting differential expression across development altered germination and growth rates, as well as in one case causing abnormal germination. A consensus Bayesian network of these genes indicated especially tight integration of environmental sensing, asexual and sexual development, and nitrogen metabolism on a natural medium, suggesting that in natural environments, a more dynamic and tentative balance of asexual and sexual development may be typical ofN. crassacolonies.IMPORTANCEOne of the most remarkable successes of life is its ability to flourish in response to temporally and spatially varying environments. Fungi occupy diverse ecosystems, and their sensitivity to these environmental changes often drives major fungal life history decisions, including the major switch from vegetative growth to asexual or sexual reproduction. Spore germination comprises the first and simplest stage of vegetative growth. We examined the dependence of this early life history on the nutritional environment using genome-wide transcriptomics. We demonstrated that for developmental regulatory genes, expression was generally conserved across nutritional environments, whereas metabolic gene expression was highly labile. The level of activation of developmental genes did depend on current nutrient conditions, as did the modularity of metabolic and developmental response network interactions. This knowledge is critical to the development of future technologies that could manipulate fungal growth for medical, agricultural, or industrial purposes.


2009 ◽  
Vol 284 (31) ◽  
pp. 20858-20868 ◽  
Author(s):  
Luc Reininger ◽  
Rita Tewari ◽  
Clare Fennell ◽  
Zoe Holland ◽  
Dean Goldring ◽  
...  

2007 ◽  
Vol 6 (10) ◽  
pp. 1795-1804 ◽  
Author(s):  
Rachel A. Howard-Till ◽  
Meng-Chao Yao

ABSTRACT Proteins containing a Tudor domain and domains homologous to staphylococcal nucleases are found in a number of eukaryotes. These “Tudor nucleases” have been found to be associated with the RNA-induced silencing complex (A. A. Caudy, R. F. Ketting, S. M. Hammond, A. M. Denli, A. M. Bathoorn, B. B. Tops, J. M. Silva, M. M. Myers, G. J. Hannon, and R. H. Plasterk, Nature 425:411-414, 2003). We have identified two Tudor nuclease gene homologs, TTN1 and TTN2, in the ciliate Tetrahymena thermophila, which has two distinct small-RNA pathways. Characterization of single and double KOs of TTN1 and TTN2 shows that neither of these genes is essential for growth or sexual reproduction. Progeny of TTN2 KOs and double knockouts occasionally show minor defects in the small-RNA-guided process of DNA deletion but appear to be normal in hairpin RNA-induced gene silencing, suggesting that Tudor nucleases play only a minor role in RNA interference in Tetrahymena. Previous studies of Tetrahymena have shown that inserted copies of the neo gene from Escherichia coli are often deleted from the developing macronucleus during sexual reproduction (Y. Liu, X. Song, M. A. Gorovsky, and K. M. Karrer, Eukaryot. Cell 4:421-431, 2005; M. C. Yao, P. Fuller, and X. Xi, Science 300:1581-1584, 2003). This transgene deletion phenomenon is hypothesized to be a form of genome defense. Analysis of the Tudor nuclease mutants revealed exceptionally high rates of deletion of the neo transgene at the TTN2 locus but no deletion at the TTN1 locus. When present in the same genome, however, the neo gene is deleted at high rates even at the TTN1 locus, further supporting a role for trans-acting RNA in this process. This deletion is not affected by the presence of the same sequence in the macronucleus, thus providing a counterargument for the role of the macronuclear genome in specifying all sequences for deletion.


Sign in / Sign up

Export Citation Format

Share Document