scholarly journals A Unique Topoisomerase II Inhibitor with Dose-Affected Anticancer Mechanisms and Less Cardiotoxicity

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3138
Author(s):  
Zhi-Ying Li ◽  
Guang-Sen Xu ◽  
Xun Li

Type II DNA topoisomerase (topo II) is an essential nuclear enzyme and a well-validated anticancer drug target. Previously, we have carried out several rounds of structural optimizations on our in-house topo II inhibitor E17, which was shown to have superior anticancer activity and less risk of multidrug resistance (MDR). Among the newly developed acridone derivatives, 6h displayed significant anticancer efficacy with unique mechanisms of action. At low concentrations, it arrested cancer cell cycles and triggered cell apoptosis, which is similar to the action of the well-known topo II inhibitor VP16. By contrast, 6h showed significant and long-term anti-proliferative activity at relatively high concentrations, with negligible influence on apoptosis. In addition, 6h exhibited no serious cardiotoxicity compared to doxorubicin (DOXO), a widely used topo II-targeting antineoplastic drug in clinic, but with damaging myocardial side effects. Collectively, our present work has supported the therapeutic value of 6h as a promising chemotherapy for cancers.

Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3705-3711 ◽  
Author(s):  
HJ Super ◽  
NR McCabe ◽  
MJ Thirman ◽  
RA Larson ◽  
MM Le Beau ◽  
...  

Chromosome band 11q23 is frequently involved in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) de novo, as well as in myelodysplastic syndromes (MDS) and lymphoma. Five percent to 15% of patients treated with chemotherapy for a primary neoplasm develop therapy-related AML (t-AML) that may show rearrangements, usually translocations involving band 11q23 or, less often, 21q22. These leukemias develop after a relatively short latent period and often follow the use of drugs that inhibit the activity of DNA-topoisomerase II (topo II). We previously identified a gene, MLL (myeloid-lymphoid leukemia or mixed-lineage leukemia), at 11q23 that is involved in the de novo leukemias. We have studied 17 patients with t-MDS/t-AML, 12 of whom had cytogenetically detectable 11q23 rearrangements. Ten of the 12 t-AML patients had received topo II inhibitors and 9 of these, all with balanced translocations of 11q23, had MLL rearrangements on Southern blot analysis. None of the patients who had not received topo II inhibitors showed an MLL rearrangement. Of the 5 patients lacking 11q23 rearrangements, some of whom had monoblastic features, none had an MLL rearrangement, although 4 had received topo II inhibitors. Our study indicates that the MLL gene rearrangements are similar both in AML that develops de novo and in t-AML. The association of exposure to topo II- reactive chemotherapy with 11q23 rearrangements involving the MLL gene in t-AML suggests that topo II may play a role in the aberrant recombination events that occur in this region both in AML de novo and in t-AML.


2003 ◽  
Vol 47 (12) ◽  
pp. 3708-3712 ◽  
Author(s):  
Saranya Auparakkitanon ◽  
Wilai Noonpakdee ◽  
Raymond K. Ralph ◽  
William A. Denny ◽  
Prapon Wilairat

ABSTRACT Antimalarial 9-anilinoacridines are potent inhibitors of parasite DNA topoisomerase II both in vitro and in situ. 3,6-Diamino substitution on the acridine ring greatly improves parasiticidal activity against Plasmodium falciparum by targeting DNA topoisomerase II. A series of 9-anilinoacridines were investigated for their abilities to inhibitβ -hematin formation, to form drug-hematin complexes, and to enhance hematin-induced lysis of red blood cells. Inhibition ofβ -hematin formation was minimal with 3,6-diamino analogs of 9-anilinoacridine and greatest with analogs with a 3,6-diCl substitution together with an electron-donating group in the 1′-anilino position. On the other hand, the presence of a 1′-N(CH3)2 group in the anilino ring produced compounds that strongly inhibited β-hematin formation but which did not appear to be sensitive to the nature of the substitutions in the acridine nucleus. The derivatives bound hematin, and Job's plots of UV-visible absorbance changes in drug-hematin complexes at various molar ratios indicated a stoichiometric ratio of 1:2. The drugs enhanced hematin-induced red blood cell lysis at low concentrations (<4 μM). These studies open up the novel possibility of development of 9-anilinoacridine antimalarials that target not only DNA topoisomerase II but alsoβ -hematin formation, which should help delay the rapid onset of resistance to drugs acting at only a single site.


1993 ◽  
Vol 29 ◽  
pp. S136
Author(s):  
C. Oliani ◽  
E. Prosperi ◽  
P. Biondani ◽  
C. Griso ◽  
F. Pavanel ◽  
...  

2020 ◽  
Vol 117 (26) ◽  
pp. 15182-15192 ◽  
Author(s):  
Xiaohang Qiao ◽  
Sabina Y. van der Zanden ◽  
Dennis P. A. Wander ◽  
Daniel M. Borràs ◽  
Ji-Ying Song ◽  
...  

The anthracycline doxorubicin (Doxo) and its analogs daunorubicin (Daun), epirubicin (Epi), and idarubicin (Ida) have been cornerstones of anticancer therapy for nearly five decades. However, their clinical application is limited by severe side effects, especially dose-dependent irreversible cardiotoxicity. Other detrimental side effects of anthracyclines include therapy-related malignancies and infertility. It is unclear whether these side effects are coupled to the chemotherapeutic efficacy. Doxo, Daun, Epi, and Ida execute two cellular activities: DNA damage, causing double-strand breaks (DSBs) following poisoning of topoisomerase II (Topo II), and chromatin damage, mediated through histone eviction at selected sites in the genome. Here we report that anthracycline-induced cardiotoxicity requires the combination of both cellular activities. Topo II poisons with either one of the activities fail to induce cardiotoxicity in mice and human cardiac microtissues, as observed for aclarubicin (Acla) and etoposide (Etop). Further, we show that Doxo can be detoxified by chemically separating these two activities. Anthracycline variants that induce chromatin damage without causing DSBs maintain similar anticancer potency in cell lines, mice, and human acute myeloid leukemia patients, implying that chromatin damage constitutes a major cytotoxic mechanism of anthracyclines. With these anthracyclines abstained from cardiotoxicity and therapy-related tumors, we thus uncoupled the side effects from anticancer efficacy. These results suggest that anthracycline variants acting primarily via chromatin damage may allow prolonged treatment of cancer patients and will improve the quality of life of cancer survivors.


1994 ◽  
Vol 126 (6) ◽  
pp. 1331-1340 ◽  
Author(s):  
V H Meller ◽  
M McConnell ◽  
P A Fisher

Most DNA topoisomerase II (topo II) in cell-free extracts of 0-2-h old Drosophila embryos appears to be nonnuclear and remains in the supernatant after low-speed centrifugation (10,000 g). Virtually all of this apparently soluble topo II is particulate with a sedimentation coefficient of 67 S. Similar topo II-containing particles were detected in Drosophila Kc tissue culture cells, 16-19-h old embryos and extracts of progesterone-matured oocytes from Xenopus. Drosophila topo II-containing particles were insensitive to EDTA, Triton X-100 and DNase I, but could be disrupted by incubation with 0.3 M NaCl or RNase A. After either disruptive treatment, topo II sedimented at 9 S. topo II-containing particles were also sensitive to micrococcal nuclease. Results of chemical cross-linking corroborated those obtained by centrifugation. Immunoblot analyses demonstrated that topo II-containing particles lacked significant amounts of lamin, nuclear pore complex protein gp210, proliferating cell nuclear antigen, RNA polymerase II subunits, histones, coilin, and nucleolin. Northern blot analyses demonstrated that topo II-containing particles lacked U RNA. Thus, current data support the notion that nonnuclear Drosophila topo II-containing particles are composed largely of topo II and an unknown RNA molecule(s).


2016 ◽  
Vol 213 (6) ◽  
pp. 651-664 ◽  
Author(s):  
Heather Edgerton ◽  
Marnie Johansson ◽  
Daniel Keifenheim ◽  
Soumya Mukherjee ◽  
Jeremy M. Chacón ◽  
...  

Faithful chromosome segregation depends on the precise timing of chromatid separation, which is enforced by checkpoint signals generated at kinetochores. Here, we provide evidence that the C-terminal domain (CTD) of DNA topoisomerase IIα (Topo II) provides a novel function at inner centromeres of kinetochores in mitosis. We find that the yeast CTD is required for recruitment of the tension checkpoint kinase Ipl1/Aurora B to inner centromeres in metaphase but is not required in interphase. Conserved CTD SUMOylation sites are required for Ipl1 recruitment. This inner-centromere CTD function is distinct from the catalytic activity of Topo II. Genetic and biochemical evidence suggests that Topo II recruits Ipl1 via the Haspin–histone H3 threonine 3 phosphorylation pathway. Finally, Topo II and Sgo1 are equally important for Ipl1 recruitment to inner centromeres. This indicates H3 T3-Phos/H2A T120-Phos is a universal epigenetic signature that defines the eukaryotic inner centromere and provides the binding site for Ipl1/Aurora B.


Sign in / Sign up

Export Citation Format

Share Document