scholarly journals Elucidating T Cell and B Cell Responses to SARS-CoV-2 in Humans: Gaining Insights into Protective Immunity and Immunopathology

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Aaruni Khanolkar

The SARS-CoV-2 pandemic is an unprecedented epochal event on at least two fronts. Firstly, in terms of the rapid spread and the magnitude of the outbreak, and secondly, on account of the equally swift response of the scientific community that has galvanized itself into action and has successfully developed, tested and deployed highly effective and novel vaccines in record time to combat the virus. The sophistication and diversification of the scientific toolbox we now have at our disposal has enabled us to interrogate both the breadth and the depth of the immune response to a degree that is unparalleled in recent memory. In terms of our understanding of what is critical to contain the virus and mitigate the effects the pandemic, neutralizing antibodies to SARS-CoV-2 garner most of the attention, however, it is essential to recognize that it is the quality and the fitness of the virus-specific T cell and B cell response that lays the foundation and the backdrop for an effective neutralizing antibody response. In this report, we will review some of the key findings that have helped define and delineate some of the essential attributes of T and B cell responses in the setting of SARS-CoV-2 infection.

2009 ◽  
Vol 77 (11) ◽  
pp. 5090-5096 ◽  
Author(s):  
Ana A. Weil ◽  
Mohammad Arifuzzaman ◽  
Taufiqur R. Bhuiyan ◽  
Regina C. LaRocque ◽  
Aaron M. Harris ◽  
...  

ABSTRACTVibrio choleraeO1 can cause diarrheal disease that may be life-threatening without treatment. Natural infection results in long-lasting protective immunity, but the role of T cells in this immune response has not been well characterized. In contrast, robust B-cell responses toV. choleraeinfection have been observed. In particular, memory B-cell responses to T-cell-dependent antigens persist for at least 1 year, whereas responses to lipopolysaccharide, a T-cell-independent antigen, wane more rapidly after infection. We hypothesize that protective immunity is mediated by anamnestic responses of memory B cells in the gut-associated lymphoid tissue, and T-cell responses may be required to generate and maintain durable memory B-cell responses. In this study, we examined B- and T-cell responses in patients with severeV. choleraeinfection. Using the flow cytometric assay of the specific cell-mediated immune response in activated whole blood, we measured antigen-specific T-cell responses usingV. choleraeantigens, including the toxin-coregulated pilus (TcpA), aV. choleraemembrane preparation, and theV. choleraecytolysin/hemolysin (VCC) protein. Our results show that memory T-cell responses develop by day 7 after infection, a time prior to and concurrent with the development of B-cell responses. This suggests that T-cell responses toV. choleraeantigens may be important for the generation and stability of memory B-cell responses. The T-cell proliferative response to VCC was of a higher magnitude than responses observed to otherV. choleraeantigens.


Author(s):  
Felix G. Delgado ◽  
Karina I. Torres ◽  
Jaime E. Castellanos ◽  
Consuelo Romero-Sánchez ◽  
Etienne Simon-Lorière ◽  
...  

The high level of dengue virus (DENV) seroprevalence in areas where Zika virus (ZIKV) is circulating and the cross-reactivity between these two viruses have raised concerns on the risk of increased ZIKV disease severity for patients with a history of previous DENV infection. To determine the role of DENV pre-immunity in ZIKV infection, we analysed the T and B cell responses against ZIKV in donors with or without previous DENV infection. Using PBMCs from donors living in an endemic area in Colombia, we have identified, by interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) assay, most of the immunodominant ZIKV T-cell epitopes in the non-structural proteins NS1, NS3 and NS5. Analyses of the T and B-cell responses in the same donors revealed a stronger T-cell response against peptides conserved between DENV and ZIKV, with a higher level of ZIKV-neutralizing antibodies in DENV-immune donors, in comparison with DENV-naïve donors. Strikingly, the potential for antibody mediated enhancement of ZIKV infection was reduced in donors with sequential DENV and ZIKV infection in comparison with donors with DENV infection only. Altogether, these data suggest that individuals with DENV immunity present improved immune responses against ZIKV.


1998 ◽  
Vol 72 (7) ◽  
pp. 6138-6145 ◽  
Author(s):  
Narendra Chirmule ◽  
Joseph V. Hughes ◽  
Guang-Ping Gao ◽  
Steven E. Raper ◽  
James M. Wilson

ABSTRACT Adenovirus vectors delivered to lung are being considered in the treatment of cystic fibrosis (CF). Vectors from which E1 has been deleted elicit T- and B-cell responses which confound their use in the treatment of chronic diseases such as CF. In this study, we directly compare the biology of an adenovirus vector from which E1 has been deleted to that of one from which E1 and E4 have been deleted, following intratracheal instillation into mouse and nonhuman primate lung. Evaluation of the E1 deletion vector in C57BL/6 mice demonstrated dose-dependent activation of both CD4 T cells (i.e., TH1 and TH2 subsets) and neutralizing antibodies to viral capsid proteins. Deletion of E4 and E1 had little impact on the CD4 T-cell proliferative response and cytolytic activity of CD8 T cells against target cells expressing viral antigens. Analysis of T-cell subsets from mice exposed to the vector from which E1 and E4 had been deleted demonstrated preservation of TH1 responses with markedly diminished TH2 responses compared to the vector with the deletion of E1. This effect was associated with reduced TH2-dependent immunoglobulin isotypes and markedly diminished neutralizing antibodies. Similar results were obtained in nonhuman primates. These studies indicate that the vector genotype can modify B-cell responses by differential activation of TH1 subsets. Diminished humoral immunity, as was observed with the E1 and E4 deletion vectors in lung, is indeed desired in applications of gene therapy where readministration of the vector is necessary.


2009 ◽  
Vol 84 (4) ◽  
pp. 1847-1855 ◽  
Author(s):  
Scott N. Mueller ◽  
William A. Langley ◽  
Elena Carnero ◽  
Adolfo García-Sastre ◽  
Rafi Ahmed

ABSTRACT The generation of vaccines that induce long-lived protective immunity against influenza virus infections remains a challenging goal. Ideally, vaccines should elicit effective humoral and cellular immunity to protect an individual from infection or disease. Cross-reactive T- and B-cell responses that are elicited by live virus infections may provide such broad protection. Optimal induction of T-cell responses involves the action of type I interferons (IFN-I). Influenza virus expressed nonstructural protein 1 (NS1) functions as an inhibitor of IFN-I and promotes viral growth. We wanted to examine the priming of CD8+ T-cell responses to influenza virus in the absence of this inhibition of IFN-I production. We generated recombinant mouse-adapted influenza A/PR/8/34 viruses with NS1 truncations and/or deletions that also express the gp33-41 epitope from lymphocytic choriomeningitis virus. Intranasal infection of mice with the attenuated viruses primed long-lived T- and B-cell responses despite significantly reduced viral replication in the lungs compared to wild-type virus. Antigen-specific CD8+ T cells expanded upon rechallenge and generated increased protective memory T-cell populations after boosting. These results show that live attenuated influenza viruses expressing truncated NS1 proteins can prime protective immunity and may have implications for the design of novel modified live influenza virus vaccines.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Leiqiong Gao ◽  
Jing Zhou ◽  
Sen Yang ◽  
Lisha Wang ◽  
Xiangyu Chen ◽  
...  

AbstractThe adaptive immunity that protects patients from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is not well characterized. In particular, the asymptomatic patients have been found to induce weak and transient SARS-CoV-2 antibody responses, but the underlying mechanisms remain unknown; meanwhile, the protective immunity that guide the recovery of these asymptomatic patients is elusive. Here, we characterized SARS-CoV-2-specific B-cell and T-cell responses in 10 asymptomatic patients and 64 patients with other disease severity (mild, n = 10, moderate, n = 32, severe, n = 12) and found that asymptomatic or mild symptomatic patients failed to mount virus-specific germinal center (GC) B cell responses that result in robust and prolonged humoral immunity, assessed by GC response indicators including follicular helper T (TFH) cell and memory B cell responses as well as serum CXCL13 levels. Alternatively, these patients mounted potent virus-specific TH1 and CD8+ T cell responses. In sharp contrast, patients of moderate or severe disease induced vigorous virus-specific GC B cell responses and associated TFH responses; however, the virus-specific TH1 and CD8+ T cells were minimally induced in these patients. These results, therefore, uncovered the protective immunity in asymptomatic patients and also revealed the strikingly dichotomous and incomplete humoral and cellular immune responses in COVID-19 patients with different disease severity, providing important insights into rational design of effective COVID-19 vaccines.


2021 ◽  
Author(s):  
John Tyler Sandberg ◽  
Renata Varnaitė ◽  
Wanda Christ ◽  
Puran Chen ◽  
Jagadeeswara R. Muvva ◽  
...  

AbstractBackgroundInsights into early, specific humoral and cellular responses to infection with SARS-CoV-2, as well as the persistence and magnitude of resulting immune memory is important amidst the ongoing pandemic. The combination of humoral and cellular immunity will most likely contribute to protection from reinfection or severe disease.MethodsHere, we conducted a longitudinal study on hospitalized moderate and severe COVID-19 patients from the acute phase of disease into convalescence at five- and nine-months post symptom onset. Utilizing flow cytometry, serological assays as well as B cell and T cell FluoroSpot assays, we assessed the magnitude and specificity of humoral and cellular immune memory during and after human SARS-CoV-2 infection.FindingsDuring acute COVID-19, we observed an increase in germinal center activity, a substantial expansion of antibodysecreting cells, and the generation of SARS-CoV-2-neutralizing antibodies. Despite gradually decreasing antibody levels, we show persistent, neutralizing antibody titers as well as robust specific memory B cell responses and polyfunctional T cell responses at five- and nine-months after symptom onset in both moderate and severe COVID-19 patients. Long-term SARS-CoV-2 specific responses were marked by preferential targeting of spike over nucleocapsid protein.ConclusionsOur findings describe the initiation and, importantly, persistence of cellular and humoral SARS-CoV-2 specific immunological memory in hospitalized COVID-19 patients long after recovery, likely contributing towards protection against reinfection.


Author(s):  
Leiqiong Gao ◽  
Jing Zhou ◽  
Sen Yang ◽  
Xiangyu Chen ◽  
Yang Yang ◽  
...  

The adaptive immunity that protects patients from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is not well characterized. In particular, the asymptomatic patients have been found to induce weak and transient SARS-CoV-2 antibody responses, but the underlying mechanisms remain unknown; meanwhile, the protective immunity that guide the recovery of these asymptomatic patients is also not well studied. Here, we characterized SARS-CoV-2-specific B-cell and T-cell responses in 10 asymptomatic patients and 49 patients with other disease severity (mild, n=10, moderate, n=32, severe, n=7) and found that asymptomatic or mild symptomatic patients failed to mount virus-specific germinal center (GC) B cell responses that result in robust and long-term humoral immunity, assessed by GC response indicators including follicular helper T (TFH) cell and memory B cell responses as well as serum CXCL13 levels. Alternatively, these patients mounted potent virus-specific TH1 and CD8+ T cell responses. In sharp contrast, patients of moderate or severe disease induced vigorous virus-specific GC B cell responses and associated TFH responses; however, the virus-specific TH1 and CD8+ T cells were minimally induced in these patients. These results therefore uncovered the protective immunity in asymptomatic patients and revealed the strikingly dichotomous and unbalanced humoral and cellular immune responses in COVID-19 patients with different disease severity, providing important insights into rational design of COVID-19 vaccines.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 307
Author(s):  
Yong Bok Seo ◽  
You Suk Suh ◽  
Ji In Ryu ◽  
Hwanhee Jang ◽  
Hanseul Oh ◽  
...  

The unprecedented and rapid spread of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) has motivated the need for a rapidly producible and scalable vaccine. Here, we developed a synthetic soluble SARS-CoV-2 spike (S) DNA-based vaccine candidate, GX-19. In mice, immunization with GX-19 elicited not only S-specific systemic and pulmonary antibody responses but also Th1-biased T cell responses in a dose-dependent manner. GX-19-vaccinated nonhuman primates seroconverted rapidly and exhibited a detectable neutralizing antibody response as well as multifunctional CD4+ and CD8+ T cell responses. Notably, when the immunized nonhuman primates were challenged at 10 weeks after the last vaccination with GX-19, they had reduced viral loads in contrast to non-vaccinated primates as a control. These findings indicate that GX-19 vaccination provides a durable protective immune response and also support further development of GX-19 as a vaccine candidate for SARS-CoV-2.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 134
Author(s):  
Zekun Mu ◽  
Barton F. Haynes ◽  
Derek W. Cain

The SARS-CoV-2 pandemic introduced the world to a new type of vaccine based on mRNA encapsulated in lipid nanoparticles (LNPs). Instead of delivering antigenic proteins directly, an mRNA-based vaccine relies on the host’s cells to manufacture protein immunogens which, in turn, are targets for antibody and cytotoxic T cell responses. mRNA-based vaccines have been the subject of research for over three decades as a platform to protect against or treat a variety of cancers, amyloidosis and infectious diseases. In this review, we discuss mRNA-based approaches for the generation of prophylactic and therapeutic vaccines to HIV. We examine the special immunological hurdles for a vaccine to elicit broadly neutralizing antibodies and effective T cell responses to HIV. Lastly, we outline an mRNA-based HIV vaccination strategy based on the immunobiology of broadly neutralizing antibody development.


Sign in / Sign up

Export Citation Format

Share Document