scholarly journals Comparing the Utility of Mitochondrial and Nuclear DNA to Adjust for Genetic Ancestry in Association Studies

Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 306 ◽  
Author(s):  
◽  
Pinchas Cohen ◽  
◽  
◽  
◽  
...  

Mitochondrial genome-wide association studies identify mitochondrial single nucleotide polymorphisms (mtSNPs) that associate with disease or disease-related phenotypes. Most mitochondrial and nuclear genome-wide association studies adjust for genetic ancestry by including principal components derived from nuclear DNA, but not from mitochondrial DNA, as covariates in statistical regression analyses. Furthermore, there is no standard when controlling for genetic ancestry during mitochondrial and nuclear genetic interaction association scans, especially across ethnicities with substantial mitochondrial genetic heterogeneity. The purpose of this study is to (1) compare the degree of ethnic variation captured by principal components calculated from microarray-defined nuclear and mitochondrial DNA and (2) assess the utility of mitochondrial principal components for association studies. Analytic techniques used in this study include a principal component analysis for genetic ancestry, decision-tree classification for self-reported ethnicity, and linear regression for association tests. Data from the Health and Retirement Study, which includes self-reported White, Black, and Hispanic Americans, was used for all analyses. We report that (1) mitochondrial principal component analysis (PCA) captures ethnic variation to a similar or slightly greater degree than nuclear PCA in Blacks and Hispanics, (2) nuclear and mitochondrial DNA classify self-reported ethnicity to a high degree but with a similar level of error, and 3) mitochondrial principal components can be used as covariates to adjust for population stratification in association studies with complex traits, as demonstrated by our analysis of height—a phenotype with a high heritability. Overall, genetic association studies might reveal true and robust mtSNP associations when including mitochondrial principal components as regression covariates.

Author(s):  
Huaqing Zhao ◽  
Nandita Mitra ◽  
Peter A. Kanetsky ◽  
Katherine L. Nathanson ◽  
Timothy R. Rebbeck

Abstract Genome-wide association studies (GWAS) are susceptible to bias due to population stratification (PS). The most widely used method to correct bias due to PS is principal components (PCs) analysis (PCA), but there is no objective method to guide which PCs to include as covariates. Often, the ten PCs with the highest eigenvalues are included to adjust for PS. This selection is arbitrary, and patterns of local linkage disequilibrium may affect PCA corrections. To address these limitations, we estimate genomic propensity scores based on all statistically significant PCs selected by the Tracy-Widom (TW) statistic. We compare a principal components and propensity scores (PCAPS) approach to PCA and EMMAX using simulated GWAS data under no, moderate, and severe PS. PCAPS reduced spurious genetic associations regardless of the degree of PS, resulting in odds ratio (OR) estimates closer to the true OR. We illustrate our PCAPS method using GWAS data from a study of testicular germ cell tumors. PCAPS provided a more conservative adjustment than PCA. Advantages of the PCAPS approach include reduction of bias compared to PCA, consistent selection of propensity scores to adjust for PS, the potential ability to handle outliers, and ease of implementation using existing software packages.


2014 ◽  
Vol 94 (5) ◽  
pp. 662-676 ◽  
Author(s):  
Hugues Aschard ◽  
Bjarni J. Vilhjálmsson ◽  
Nicolas Greliche ◽  
Pierre-Emmanuel Morange ◽  
David-Alexandre Trégouët ◽  
...  

2019 ◽  
Vol 105 (4) ◽  
pp. 763-772 ◽  
Author(s):  
Huaying Fang ◽  
Qin Hui ◽  
Julie Lynch ◽  
Jacqueline Honerlaw ◽  
Themistocles L. Assimes ◽  
...  

2010 ◽  
Vol 34 (7) ◽  
pp. 716-724 ◽  
Author(s):  
Xi Chen ◽  
Lily Wang ◽  
Bo Hu ◽  
Mingsheng Guo ◽  
John Barnard ◽  
...  

2019 ◽  
Vol 35 (17) ◽  
pp. 3046-3054 ◽  
Author(s):  
Anastasia Gurinovich ◽  
Harold Bae ◽  
John J Farrell ◽  
Stacy L Andersen ◽  
Stefano Monti ◽  
...  

Abstract Motivation Over the last decade, more diverse populations have been included in genome-wide association studies. If a genetic variant has a varying effect on a phenotype in different populations, genome-wide association studies applied to a dataset as a whole may not pinpoint such differences. It is especially important to be able to identify population-specific effects of genetic variants in studies that would eventually lead to development of diagnostic tests or drug discovery. Results In this paper, we propose PopCluster: an algorithm to automatically discover subsets of individuals in which the genetic effects of a variant are statistically different. PopCluster provides a simple framework to directly analyze genotype data without prior knowledge of subjects’ ethnicities. PopCluster combines logistic regression modeling, principal component analysis, hierarchical clustering and a recursive bottom-up tree parsing procedure. The evaluation of PopCluster suggests that the algorithm has a stable low false positive rate (∼4%) and high true positive rate (>80%) in simulations with large differences in allele frequencies between cases and controls. Application of PopCluster to data from genetic studies of longevity discovers ethnicity-dependent heterogeneity in the association of rs3764814 (USP42) with the phenotype. Availability and implementation PopCluster was implemented using the R programming language, PLINK and Eigensoft software, and can be found at the following GitHub repository: https://github.com/gurinovich/PopCluster with instructions on its installation and usage. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ngan K. Tran ◽  
Rodney A. Lea ◽  
Samuel Holland ◽  
Quan Nguyen ◽  
Arti M. Raghubar ◽  
...  

AbstractChronic kidney disease (CKD) is a persistent impairment of kidney function. Genome-wide association studies (GWAS) have revealed multiple genetic loci associated with CKD susceptibility but the complete genetic basis is not yet clear. Since CKD shares risk factors with cardiovascular diseases and diabetes, there may be pleiotropic loci at play but may go undetected when using single phenotype GWAS. Here, we used multi-phenotype GWAS in the Norfolk Island isolate (n = 380) to identify new loci associated with CKD. We performed a principal components analysis on different combinations of 29 quantitative traits to extract principal components (PCs) representative of multiple correlated phenotypes. GWAS of a PC derived from glomerular filtration rate, serum creatinine, and serum urea identified a suggestive peak (pmin = 1.67 × 10–7) that mapped to KCNIP4. Inclusion of other secondary CKD measurements with these three kidney function traits identified the KCNIP4 locus with GWAS significance (pmin = 1.59 × 10–9). Finally, we identified a group of two SNPs with increased minor allele frequencies as potential functional variants. With the use of genetic isolate and the PCA-based multi-phenotype GWAS approach, we have revealed a potential pleotropic effect locus for CKD. Further studies are required to assess functional relevance of this locus.


Sign in / Sign up

Export Citation Format

Share Document