scholarly journals Regulation of Ketogenic Enzyme HMGCS2 by Wnt/β-catenin/PPARγ Pathway in Intestinal Cells

Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1106 ◽  
Author(s):  
Ji Tae Kim ◽  
Chang Li ◽  
Heidi L. Weiss ◽  
Yuning Zhou ◽  
Chunming Liu ◽  
...  

The Wnt/β-catenin pathway plays a crucial role in development and renewal of the intestinal epithelium. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme in the synthesis of ketone body β-hydroxybutyrate (βHB), contributes to the regulation of intestinal cell differentiation. Here, we have shown that HMGCS2 is a novel target of Wnt/β-catenin/PPARγ signaling in intestinal epithelial cancer cell lines and normal intestinal organoids. Inhibition of the Wnt/β-catenin pathway resulted in increased protein and mRNA expression of HMGCS2 and βHB production in human colon cancer cell lines LS174T and Caco2. In addition, Wnt inhibition increased expression of PPARγ and its target genes, FABP2 and PLIN2, in these cells. Conversely, activation of Wnt/β-catenin signaling decreased protein and mRNA levels of HMGCS2, βHB production, and expression of PPARγ and its target genes in LS174T and Caco2 cells and mouse intestinal organoids. Moreover, inhibition of PPARγ reduced HMGCS2 expression and βHB production, while activation of PPARγ increased HMGCS2 expression and βHB synthesis. Furthermore, PPARγ bound the promoter of HMGCS2 and this binding was enhanced by β-catenin knockdown. Finally, we showed that HMGCS2 inhibited, while Wnt/β-catenin stimulated, glycolysis, which contributed to regulation of intestinal cell differentiation. Our results identified HMGCS2 as a downstream target of Wnt/β-catenin/PPARγ signaling in intestinal epithelial cells. Moreover, our findings suggest that Wnt/β-catenin/PPARγ signaling regulates intestinal cell differentiation, at least in part, through regulation of ketogenesis.

2010 ◽  
Vol 62 (8) ◽  
pp. 1007-1016 ◽  
Author(s):  
Weimin Guo ◽  
Lin Nie ◽  
Dayong Wu ◽  
Mitchell L. Wise ◽  
F. William Collins ◽  
...  

2012 ◽  
Vol 12 (6) ◽  
pp. 8062-8070 ◽  
Author(s):  
FENG-QI FANG ◽  
HUI-SHU GUO ◽  
JIE ZHANG ◽  
LI-YING BAN ◽  
JI-WEI LIU ◽  
...  

1994 ◽  
Vol 266 (3) ◽  
pp. G459-G468 ◽  
Author(s):  
P. Singh ◽  
Z. Xu ◽  
B. Dai ◽  
S. Rajaraman ◽  
N. Rubin ◽  
...  

Gastrin is mitogenic for several colon cancers. To assess a possible autocrine role of gastrin in colon cancers, we examined human colon cancer cell lines for expression of gastrin mRNA and various forms of gastrin. Gastrin mRNA was not detected in the majority of colon cancer cell lines by Northern hybridization but was detected in all human colon cancer lines by the sensitive method of reverse transcriptase-polymerase chain reaction (PCR). Gastrin mRNA was quantitated by the competitive PCR method. The majority of cell lines expressed very low levels of gastrin mRNA (< 1-5 copies/cell); only one cell line expressed > 20 copies/cell. The mature carboxyamidated form of gastrin was not detected in any of the cell lines by radioimmunoassay or immunocytochemistry. Results suggested that either gastrin mRNA expressed by colon cancer cells was altered (mutated) or posttranslational processing of progastrin was incomplete. Gastrin cDNA from all the colon cancer cell lines had an identical sequence to the published sequence of human gastrin cDNA. Specific antibodies against precursor forms of gastrin were used, and significant concentrations of nonamidated (glycine-extended) and prepro forms of gastrin were measured in tumor extracts of representative colon cancer cell lines. The presence of precursor forms of gastrin suggested a lack of one or more of the processing enzymes and/or cofactors. Significant concentrations of the processing enzyme (peptidylglycine alpha-amidating monooxygenase) were detected in colon cancer cells by immunocytochemistry. Therefore, lack of other cofactors or enzymes may be contributing to incomplete processing of precursor forms of gastrin, which merits further investigation. Since low levels of gastrin mRNA were expressed by the majority of human colon cancer cell lines and progastrin was incompletely processed, it seems unlikely that gastrin can function as a viable autocrine growth factor for colon cancer cells. High concentrations of glycine-extended gastrin-17 (GG) (> 10(-6) M) were mitogenic for a gastrin-responsive human colon cancer (DLD-1) cell line in vitro. It remains to be seen if GG or other precursor forms of gastrin are similarly mitogenic in vivo, which may then lend credibility to a possible autocrine role of gastrinlike peptides in colon cancers.


Sign in / Sign up

Export Citation Format

Share Document