scholarly journals The G Protein-Coupled Estrogen Receptor (GPER) Expression Correlates with Pro-Metastatic Pathways in ER-Negative Breast Cancer: A Bioinformatics Analysis

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 622 ◽  
Author(s):  
Marianna Talia ◽  
Ernestina De Francesco ◽  
Damiano Rigiracciolo ◽  
Maria Muoio ◽  
Lucia Muglia ◽  
...  

The G protein-coupled estrogen receptor (GPER, formerly known as GPR30) is a seven-transmembrane receptor that mediates estrogen signals in both normal and malignant cells. In particular, GPER has been involved in the activation of diverse signaling pathways toward transcriptional and biological responses that characterize the progression of breast cancer (BC). In this context, a correlation between GPER expression and worse clinical-pathological features of BC has been suggested, although controversial data have also been reported. In order to better assess the biological significance of GPER in the aggressive estrogen receptor (ER)-negative BC, we performed a bioinformatics analysis using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets. Gene expression correlation and the statistical analysis were carried out with R studio base functions and the tidyverse package. Pathway enrichment analysis was evaluated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the Database for Annotation, Visualization and Integrated Discovery (DAVID) website, whereas gene set enrichment analysis (GSEA) was performed with the R package phenoTest. The survival analysis was determined with the R package survivALL. Analyzing the expression data of more than 2500 primary BC, we ascertained that GPER levels are associated with pro-migratory and metastatic genes belonging to cell adhesion molecules (CAMs), extracellular matrix (ECM)-receptor interaction, and focal adhesion (FA) signaling pathways. Thereafter, evaluating the disease-free interval (DFI) in ER-negative BC patients, we found that the subjects expressing high GPER levels exhibited a shorter DFI in respect to those exhibiting low GPER levels. Overall, our results may pave the way to further dissect the network triggered by GPER in the breast malignancies lacking ER toward a better assessment of its prognostic significance and the action elicited in mediating the aggressive features of the aforementioned BC subtype.

Author(s):  
En Xu ◽  
Xuefeng Xia ◽  
Chaoyu Jiang ◽  
Zijian Li ◽  
Zhi Yang ◽  
...  

G protein coupled estrogen receptor (GPER1) is a membrane estrogen receptor, belonging to the seven-transmembrane G protein-coupled receptors family, and has important biological functions in cancer. However, the functional role of GPER1 in gastric cancer (GC) remain incompletely understood. In the present study, we employed gene set enrichment analysis and discovered that GPER1 expression was concomitant with EMT process and was positively correlated with activation of the PI3K/AKT pathway in GC. Knockdown of GPER1 with siRNA suppressed the proliferation, migration, and invasion of AGS and MGC-803 GC cells. Knockdown of GPER1 also downregulated the mesenchymal markers N-cadherin and vimentin, upregulated E-cadherin, an epithelial marker, and suppressed expression of the Snail, Slug and Twist1 transcription factors, indicating that knockdown of GPER1 inhibited EMT. Moreover, 740Y-P, a PI3K activator, reversed the effects of GPER1 knockdown on EMT processes. Overexpression of GPER1 with plasmid can further prove these findings. In summary, these data demonstrate that GPER1 inhibition suppresses the proliferation, migration, and invasion of gastric cancer cells by inhibiting PI3K/AKT-mediated EMT. Our study elucidated the function of GPER1 in gastric cancer, and we identified PI3K/AKT-mediated EMT as a novel mechanism by which GPER1 contributes to proliferation, migration, and invasion of gastric cancer. These data suggest that combining inhibition of GPER1 and PI3K may be a potential therapeutic approach to inhibit gastric cancer metastasis.


2011 ◽  
Vol 128 (2) ◽  
pp. 457-466 ◽  
Author(s):  
Atanas Ignatov ◽  
Tanja Ignatov ◽  
Christine Weißenborn ◽  
Holm Eggemann ◽  
Joachim Bischoff ◽  
...  

2020 ◽  
Author(s):  
Liancheng Zhu ◽  
Mingzi Tan ◽  
Haoya Xu ◽  
Bei Lin

Abstract Background.Human Epididymis Protein 4 (HE4) is a novel serum biomarker for diagnosis of epithelial ovarian cancer (EOC) with high specificity and sensitivity compared with CA125, and the increasing researches have been carried out on its roles in promoting carcinogenesis and chemoresistance in EOC in recent years, however, its underlying molecular mechanisms remain poorly understood. The aim of this study was to elucidate the molecular mechanisms of HE4 stimulation and to identify the key genes and pathways mediating carcinogenesis in EOC using microarray and bioinformatics analysis.Methods. We established a stable HE4-silence ES-2 ovarian cancer cell line labeled as “S”, and its active HE4 protein stimulated cells labeled as “S4”. Human whole genome microarray analysis was used to identify deferentially expressed genes (DEGs) from triplicate samples of S4 and S cells. “clusterProfiler” package in R, DAVID, Metascape, and Gene Set Enrichment Analysis (GSEA) were used to perform gene ontology (GO) and pathway enrichment analysis, and cBioPortal for WFDC2 coexpression analysis. GEO dataset (GSE51088) and quantitative real-time polymerase chain reaction (qRT-PCR) was applied for validation. The protein–protein interaction (PPI) network and modular analyses were performed using Metascape and Cytoscape. Results.In total, 713 DEGs were found (164 up regulated and 549 down regulated) and further analyzed by GO, pathway enrichment and PPI analyses. We found that MAPK pathway accounted for a significant portion of the enriched terms. WFDC2 coexpression analysis revealed ten WFDC2 coexpressed genes (TMEM220A, SEC23A, FRMD6, PMP22, APBB2, DNAJB4, ERLIN1, ZEB1, RAB6B, and PLEKHF1) that were also dramatically changed in S4 cells and validated by dataset GSE51088. Kaplan–Meier survival statistics revealed clinical significance for all of the 10 target genes. Finally, PPI was constructed, sixteen hub genes and eight molecular complex detections (MCODEs) were identified, the seeds of five most significant MCODEs were subjected to GO and KEGG enrichment analysis and their clinical significance was evaluated.Conclusions.By applying microarray and bioinformatics analyses, we identified DEGs and determined a comprehensive gene network of active HE4 stimulation in EOC cells. We offered several possible mechanisms and identified therapeutic and prognostic targets of HE4 in EOC.


2020 ◽  
Author(s):  
Liancheng Zhu ◽  
Mingzi Tan ◽  
Haoya Xu ◽  
Bei Lin

Abstract Background: Human epididymis protein 4 (HE4) is a novel serum biomarker for diagnosing epithelial ovarian cancer (EOC) with high specificity and sensitivity, compared with CA125. Recent studies have focused on the roles of HE4 in promoting carcinogenesis and chemoresistance in EOC; however, the molecular mechanisms underlying its action remain poorly understood. This study was conducted to determine the molecular mechanisms underlying HE4 stimulation and identifying key genes and pathways mediating carcinogenesis in EOC by microarray and bioinformatics analysis.Methods: We established a stable HE4-silenced ES-2 ovarian cancer cell line labeled as “S”; the S cells were stimulated with the active HE4 protein, yielding cells labeled as “S4”. Human whole-genome microarray analysis was used to identify differentially expressed genes (DEGs) in S4 and S cells. The “clusterProfiler” package in R, DAVID, Metascape, and Gene Set Enrichment Analysis were used to perform gene ontology (GO) and pathway enrichment analysis, and cBioPortal was used for WFDC2 coexpression analysis. The GEO dataset (GSE51088) and quantitative real-time polymerase chain reaction were used to validate the results. Protein–protein interaction (PPI) network and modular analyses were performed using Metascape and Cytoscape, respectively. Results: In total, 713 DEGs were identified (164 upregulated and 549 downregulated) and further analyzed by GO, pathway enrichment, and PPI analyses. We found that the MAPK pathway accounted for a significant large number of the enriched terms. WFDC2 coexpression analysis revealed ten WFDC2-coexpressed genes (TMEM220A, SEC23A, FRMD6, PMP22, APBB2, DNAJB4, ERLIN1, ZEB1, RAB6B, and PLEKHF1) whose expression levels were dramatically altered in S4 cells; this was validated using the GSE51088 dataset. Kaplan–Meier survival statistics revealed that all 10 target genes were clinically significant. Finally, in the PPI network, 16 hub genes and 8 molecular complex detections (MCODEs) were identified; the seeds of the five most significant MCODEs were subjected to GO and KEGG enrichment analyses and their clinical relevance was evaluated.Conclusions: Through microarray and bioinformatics analyses, we identified DEGs and determined a comprehensive gene network following active HE4 stimulation in EOC cells. We proposed several possible mechanisms underlying the action of HE4 and identified the therapeutic and prognostic targets of HE4 in EOC.


2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Magdalena Dragan ◽  
Mai-Uyen Nguyen ◽  
Stephania Guzman ◽  
Cameron Goertzen ◽  
Muriel Brackstone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document