scholarly journals Impact of BDNF Val66Met Polymorphism on Myocardial Infarction: Exploring the Macrophage Phenotype

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1084 ◽  
Author(s):  
Leonardo Sandrini ◽  
Laura Castiglioni ◽  
Patrizia Amadio ◽  
José Pablo Werba ◽  
Sonia Eligini ◽  
...  

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin growth factor family, well known for its role in the homeostasis of the cardiovascular system. Recently, the human BDNF Val66Met single nucleotide polymorphism has been associated with the increased propensity for arterial thrombosis related to acute myocardial infarction (AMI). Using cardiac magnetic resonance imaging and immunohistochemistry analyses, we showed that homozygous mice carrying the human BDNF Val66Met polymorphism (BDNFMet/Met) undergoing left anterior descending (LAD) coronary artery ligation display an adverse cardiac remodeling compared to wild-type (BDNFVal/Val). Interestingly, we observed a persistent presence of pro-inflammatory M1-like macrophages and a reduced accumulation of reparative-like phenotype macrophages (M2-like) in the infarcted heart of mutant mice. Further qPCR analyses showed that BDNFMet/Met peritoneal macrophages are more pro-inflammatory and have a higher migratory ability compared to BDNFVal/Val ones. Finally, macrophages differentiated from circulating monocytes isolated from BDNFMet/Met patients with coronary heart disease displayed the same pro-inflammatory characteristics of the murine ones. In conclusion, the BDNF Val66Met polymorphism predisposes to adverse cardiac remodeling after myocardial infarction in a mouse model and affects macrophage phenotype in both humans and mice. These results provide a new cellular mechanism by which this human BDNF genetic variant could influence cardiovascular disease.

2016 ◽  
Vol 202 ◽  
pp. 146-153 ◽  
Author(s):  
Remya Sreedhar ◽  
Somasundaram Arumugam ◽  
Rajarajan A. Thandavarayan ◽  
Vijayasree V. Giridharan ◽  
Vengadeshprabhu Karuppagounder ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 270 ◽  
Author(s):  
Luz Ibarra-Lara ◽  
María Sánchez-Aguilar ◽  
Elizabeth Soria-Castro ◽  
Jesús Vargas-Barrón ◽  
Francisco Roldán ◽  
...  

Myocardial infarction (MI) initiates an inflammatory response that promotes both beneficial and deleterious effects. The early response helps the myocardium to remove damaged tissue; however, a prolonged later response brings cardiac remodeling characterized by functional, metabolic, and structural pathological changes. Current pharmacological treatments have failed to reverse ischemic-induced cardiac damage. Therefore, our aim was to study if clofibrate treatment was capable of decreasing inflammation and apoptosis, and reverse ventricular remodeling and MI-induced functional damage. Male Wistar rats were assigned to (1) Sham coronary artery ligation (Sham) or (2) Coronary artery ligation (MI). Seven days post-MI, animals were further divided to receive vehicle (V) or clofibrate (100 mg/kg, C) for 7 days. The expression of IL-6, TNF-α, and inflammatory related molecules ICAM-1, VCAM-1, MMP-2 and -9, nuclear NF-kB, and iNOS, were elevated in MI-V. These inflammatory biomarkers decreased in MI-C. Also, apoptotic proteins (Bax and pBad) were elevated in MI-V, while clofibrate augmented anti-apoptotic proteins (Bcl-2 and 14-3-3ε). Clofibrate also protected MI-induced changes in ultra-structure. The ex vivo evaluation of myocardial functioning showed that left ventricular pressure and mechanical work decreased in infarcted rats; clofibrate treatment raised those parameters to control values. Echocardiogram showed that clofibrate partially reduced LV dilation. In conclusion, clofibrate decreases cardiac remodeling, decreases inflammatory molecules, and partly preserves myocardial diameters.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Zheng Yang ◽  
Qing-Qing Wu ◽  
Yang Xiao ◽  
Ming Xia Duan ◽  
Chen Liu ◽  
...  

Whether aucubin could protect myocardial infarction- (MI-) induced cardiac remodeling is not clear. In this study, in a mouse model, cardiac remodeling was induced by left anterior descending coronary artery ligation surgery. Mice were intraperitoneally injected with aucubin (10 mg/kg) 3 days post-MI. Two weeks post-MI, mice in the aucubin treatment group showed decreased mortality, decreased infarct size, and improved cardiac function. Aucubin also decreased cardiac remodeling post-MI. Consistently, aucubin protected cardiomyocytes against hypoxic injury in vitro. Mechanistically, we found that aucubin inhibited the ASK1/JNK signaling. These effects were abolished by the JNK activator. Moreover, we found that the oxidative stress was attenuated in both in vivo aucubin-treated mice heart and in vitro-treated cardiomyocytes, which caused decreased thioredoxin (Trx) consumption, leading to ASK1 forming the inactive complex with Trx. Aucubin increased nNOS-derived NO production in vivo and vitro. The protective effects of aucubin were reversed by the NOS inhibitors L-NAME and L-VINO in vitro. Furthermore, nNOS knockout mice also reversed the protective effects of aucubin on cardiac remodeling. Taken together, aucubin protects against cardiac remodeling post-MI through activation of the nNOS/NO pathway, which subsequently attenuates the ROS production, increases Trx preservation, and leads to inhibition of the ASK1/JNK pathway.


2020 ◽  
Vol 134 (11) ◽  
pp. 1191-1218 ◽  
Author(s):  
Rana Ghali ◽  
Nada J. Habeichi ◽  
Abdullah Kaplan ◽  
Cynthia Tannous ◽  
Emna Abidi ◽  
...  

Abstract Myocardial infarction (MI) is the leading cause of mortality worldwide. Interleukin (IL)-33 (IL-33) is a cytokine present in most cardiac cells and is secreted on necrosis where it acts as a functional ligand for the ST2 receptor. Although IL-33/ST2 axis is protective against various forms of cardiovascular diseases, some studies suggest potential detrimental roles for IL-33 signaling. The aim of the present study was to examine the effect of IL-33 administration on cardiac function post-MI in mice. MI was induced by coronary artery ligation. Mice were treated with IL-33 (1 μg/day) or vehicle for 4 and 7 days. Functional and molecular changes of the left ventricle (LV) were assessed. Single cell suspensions were obtained from bone marrow, heart, spleen, and peripheral blood to assess the immune cells using flow cytometry at 1, 3, and 7 days post-MI in IL-33 or vehicle-treated animals. The results of the present study suggest that IL-33 is effective in activating a type 2 cytokine milieu in the damaged heart, consistent with reduced early inflammatory and pro-fibrotic response. However, IL-33 administration was associated with worsened cardiac function and adverse cardiac remodeling in the MI mouse model. IL-33 administration increased infarct size, LV hypertrophy, cardiomyocyte death, and overall mortality rate due to cardiac rupture. Moreover, IL-33-treated MI mice displayed a significant myocardial eosinophil infiltration at 7 days post-MI when compared with vehicle-treated MI mice. The present study reveals that although IL-33 administration is associated with a reparative phenotype following MI, it worsens cardiac remodeling and promotes heart failure.


2015 ◽  
Vol 37 (3) ◽  
pp. 979-990 ◽  
Author(s):  
Yi Jiang ◽  
Jianwen Bai ◽  
Lunxian Tang ◽  
Pei Zhang ◽  
Jun Pu

Background/Aims: Over-activation of cellular inflammatory effectors adversely affects myocardial function after acute myocardial infarction (AMI). The CC-chemokine CCL21 is, via its receptor CCR7, one of the key regulators of inflammation and immune cell recruitment, participates in various inflammatory disorders, including cardiovascular ones. This study explored the therapeutic effect of an anti-CCL21 antibody in cardiac remodeling after myocardial infarction. Methods and Results: An animal model of AMI generated by left anterior descending coronary artery ligation in C57BL/6 mice resulted in higher levels of circulating CCL21 and cardiac CCR7. Neutralization of CCL21 by intravenous injection of anti-CCL21 monoclonal antibody reduced infarct size after AMI, decreased serum levels of neutrophil and monocyte chemo attractants post AMI, diminished neutrophil and macrophage recruitment in infarcted myocardium, and suppressed MMP-9 and total collagen content in myocardium. Anti-CCL21 treatment also limited cardiac enlargement and improved left ventricular function. Conclusions: Our study indicated that CCL21 was involved in cardiac remodeling post infarction and anti-CCL21 strategies might be useful in the treatment of AMI.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Jun Du ◽  
Wei-liang Gu ◽  
Chang-xun Chen ◽  
Ying Wang ◽  
Jian Lv

Introduction. This study was designed to explore the effect and mechanism of a classic Chinese medicine formula Jiajian Yunvjian (JJYNJ) on cardiac remodeling. Cardiac remodeling after myocardial infarction (MI) model was achieved by coronary artery ligation (CAL).Methodology. When dosed orally once daily, the effects of JJYNJ on hemodynamics, left ventricular weight index (LVWI), heart weight index (HWI), concentration, and gene expression of neuroendocrine factors as well as the histomorphological observation were determined.Results. After 4 weeks, mild cardiac remodeling in CAL group was characterized compared with sham group, but after 4 weeks of treatment of JJYNJ, hemodynamics improved, HWI reduced, and circulating angiotensin II (Ang II), endothelin-1 (ET-1), tumor necrosis factor-α(TNF-α), and hydroxyproline (Hyp) concentrations as well as Ang II receptor type 1 (AT1R) mRNA, transforming growth factorβ1(TGF-β1) mRNA, and TNF-αmRNA levels in myocardium were lower than in CAL group. Decreased plasma aldosterone (ALD) concentration, cross-sectional area of cardiomyocyte, collagen volume fraction (CVF), collagen types I and III, perivascular collagen area (PVCA), and upregulated nitric oxide (NO) levels were observed at the same time.Conclusions. These findings suggest that JJYNJ may have a protective and therapeutic function on cardiac remodeling related to MI.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
O Petyunina ◽  
M P Kopytsya ◽  
A E Berezin ◽  
A A Berezin

Abstract Introduction Endothelial NO-synthase (eNOS) is constitutive enzyme, which is expressed in mature endothelial cells and promotes direct vascular dilatation. Single nucleotide polymorphism (SNP) of T786C in eNOS gene may influence on adverse cardiac remodeling after ST-elevation myocardial infarction (STEMI). Purpose To investigate possible associations between SNP T786C in eNOS gene and adverse cardiac remodeling after STEMI Methods 177 acute STEMI patients treated with primary and facilitate percutaneous coronary intervention that were admitted to intensive care unit of a Therapy National Institute were enrolled in the study. Anthropometry, cardiovascular risk assay, coronary angiography, echocardiography and biomarkers' measure were performed at baseline. The DNA extraction was performed with a commercial kit using real-time polymerase chain reaction PCR. All procedures performed in the study involving human participants were in accordance with the ethical standards and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards and approved by the local ethics committee (Protocol No. 8, 29.08.2016). Written informed consent was obtained from each patient. Results There were correlations between 786CC polymorphism in eNOs gene and adverse cardiac remodeling (r=0.48; p=0.001), LDL cholesterol (r=0.32; p=0.012), type 2 diabetes mellitus (r=0.30; p=0.042), diastolic BP (r=−0.26; p=0.048), unstable angina prior to STEMI (r=0.25; p=0.047) and total quantity of complicated STEMI (r=0.23; p=0.042). Additionally, there were not significant relations between 786CC polymorphism in eNOs gene and multiple coronary vessel injury, STEMI localization, levels of circulating biomarkers of myocardial injury, and amount of damaged coronary arteries. Using univariate and multivariate regressive logistic analysis we found that 786CC genotype of eNOS was independent predictor for late adverse LV remodeling (β-coefficient = 1.57342; odds ratio = 4.8231; 95% confidence interval = 1.5349–15.1552; p=0.0071). Conclusions The polymorphism 786CC in eNOs gene was found as an independent predictor for late adverse cardiac remodeling after STEMI. Acknowledgement/Funding None


1999 ◽  
Vol 277 (2) ◽  
pp. H610-H616 ◽  
Author(s):  
Marcel Ruzicka ◽  
Baoxue Yuan ◽  
Frans H. H. Leenen

Mechanical stretch, ANG II, and α1-receptor stimulation may contribute to cardiac remodeling after myocardial infarction (MI). Each of these mechanisms involves different signaling pathways for the cellular hypertrophic response. All three also activate the Na+/H+exchanger. In the present study we evaluated the hypothesis that activation of the Na+/H+exchanger is involved in parallel with other signaling mechanisms for ANG II. Three days before coronary artery ligation, rats were randomly allocated to no treatment or treatment with amiloride, losartan, or amiloride and losartan in combination. Four weeks after coronary artery ligation, left ventricular (LV) function was assessed from in vivo resting cardiac pressures, hemodynamic responses to cardiac volume and pressure load, and cardiac remodeling by in vitro pressure-volume curves and LV and right ventricle (RV) weight. Amiloride and losartan given alone to a similar extent attenuated the shift of the pressure-volume curve to the right. This effect was significantly more pronounced with amiloride and losartan in combination. Each drug alone to a minor extent improved LV responses to pressure and volume load. However, with amiloride and losartan in combination, close-to-normal responses to pressure and volume load were observed. Losartan and amiloride alone had only a small effect on development of RV hypertrophy after MI but in combination completely prevented the RV hypertrophy. Amiloride and losartan appear to be complementary in prevention of cardiac remodeling and LV dysfunction after MI. This finding suggests that, besides ANG II, other mechanisms activating the Na+/H+exchanger contribute to cardiac remodeling after MI.


1989 ◽  
Vol 66 (2) ◽  
pp. 712-719 ◽  
Author(s):  
T. I. Musch ◽  
R. L. Moore ◽  
P. G. Smaldone ◽  
M. Riedy ◽  
R. Zelis

The hemodynamic response to maximal exercise was determined in sedentary and trained rats with a chronic myocardial infarction (MI) produced by coronary artery ligation and in rats that underwent sham operations (SHAM). Infarct size in the MI groups of rats comprised 28–29% of the total left ventricle and resulted in both metabolic and hemodynamic changes that suggested that these animals had moderate compensated heart failure. The training regimen used in the present study produced significant increases in maximal O2 uptake (VO2max) when expressed in absolute terms (ml/min) or when normalized for body weight (ml.min-1.kg-1) and consisted of treadmill running at work loads that were equivalent to 70–80% of the animal's VO2max for a period of 60 min/day, 5 days/wk over an 8- to 10-wk interval. This training paradigm produced two major cardiocirculatory adaptations in the MI rat that had not been elicited previously when using a training paradigm of a lower intensity. First, the decrement in the maximal heart rate response to exercise (known as “chronotropic incompetence”) found in the sedentary MI rat was completely reversed by endurance training. Second, the downregulation of cardiac myosin isozyme composition from the fast ATPase V1 isoform toward the slower ATPase (V2 and V3) isoforms in the MI rat was partially reversed by endurance training. These cardiac adaptations occurred without a significant increase in left ventricular pump function as an increase in maximal cardiac output (Qmax) and maximal stroke volume (SVmax) did not occur in the trained MI rat.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 26 (4) ◽  
pp. 351-357 ◽  
Author(s):  
W.G. Kim ◽  
Y.C. Shin ◽  
S.W. Hwang ◽  
C. Lee ◽  
C.Y. Na

We report a comparison of the effects of myocardial infarction in dogs and sheep using sequential ligation of the left anterior descending artery (LAD) and its diagonal branch (DA), with hemodynamic, ultrasonographic and pathological evaluations. Five animals were used in each group. After surgical preparation, the LAD was ligated at a point approximately 40% of the distance from the apex to the base of the heart, and after one hour, the DA was ligated at the same level. Hemodynamic and ultrasonographic measurements were performed preligation, 30 minutes after LAD ligation, and 1 hour after DA ligation. As a control, two animals in each group were used for the simultaneous ligation of the LAD and the DA. Two months after the coronary ligation, the animals were evaluated as previously, and killed for postmortem examination of their hearts. All seven animals in the dog group survived the experimental procedures, while in the sheep group only animals with sequential ligation of the LAD and DA survived. Statistically significant decreases in systemic arterial blood pressure and cardiac output, and an increase in the pulmonary artery capillary wedge pressure (PACWP) were observed one hour after sequential ligation of the LAD and its DA in the sheep, while only systemic arterial pressures decreased in the dog. Ultrasonographic analyses demonstrated variable degrees of anteroseptal dyskinesia and akinesia in all sheep, but in no dogs. Data two months after coronary artery ligation showed significant increases in central venous pressure, pulmonary artery pressure, and PACWP in the sheep, but not in the dog. Left ventricular end-diastolic dimension and left ventricular end-systolic dimension in ultrasonographic studies were also increased only in the sheep. Pathologically, the well-demarcated thin-walled transmural anteroseptal infarcts with chamber enlargement were clearly seen in all specimens of sheep, and only-mild-to-moderate chamber enlargements with endocardial fibrosis were observed in the dog hearts. In conclusion, this study confirms that the dog is not a suitable model for myocardial infarction with failure by coronary artery ligation despite negligent operative mortality, when compared directly with an ovine model.


Sign in / Sign up

Export Citation Format

Share Document