scholarly journals The Effects of Historical Housing Policies on Resident Exposure to Intra-Urban Heat: A Study of 108 US Urban Areas

Climate ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
Jeremy S. Hoffman ◽  
Vivek Shandas ◽  
Nicholas Pendleton

The increasing intensity, duration, and frequency of heat waves due to human-caused climate change puts historically underserved populations in a heightened state of precarity, as studies observe that vulnerable communities—especially those within urban areas in the United States—are disproportionately exposed to extreme heat. Lacking, however, are insights into fundamental questions about the role of historical housing policies in cauterizing current exposure to climate inequities like intra-urban heat. Here, we explore the relationship between “redlining”, or the historical practice of refusing home loans or insurance to whole neighborhoods based on a racially motivated perception of safety for investment, with present-day summertime intra-urban land surface temperature anomalies. Through a spatial analysis of 108 urban areas in the United States, we ask two questions: (1) how do historically redlined neighborhoods relate to current patterns of intra-urban heat? and (2) do these patterns vary by US Census Bureau region? Our results reveal that 94% of studied areas display consistent city-scale patterns of elevated land surface temperatures in formerly redlined areas relative to their non-redlined neighbors by as much as 7 °C. Regionally, Southeast and Western cities display the greatest differences while Midwest cities display the least. Nationally, land surface temperatures in redlined areas are approximately 2.6 °C warmer than in non-redlined areas. While these trends are partly attributable to the relative preponderance of impervious land cover to tree canopy in these areas, which we also examine, other factors may also be driving these differences. This study reveals that historical housing policies may, in fact, be directly responsible for disproportionate exposure to current heat events.

2016 ◽  
Vol 551-552 ◽  
pp. 317-326 ◽  
Author(s):  
Marco Morabito ◽  
Alfonso Crisci ◽  
Alessandro Messeri ◽  
Simone Orlandini ◽  
Antonio Raschi ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anamika Shreevastava ◽  
Saiprasanth Bhalachandran ◽  
Gavan S. McGrath ◽  
Matthew Huber ◽  
P. Suresh C. Rao

AbstractExtreme heat is one of the deadliest health hazards that is projected to increase in intensity and persistence in the near future. Here, we tackle the problem of spatially heterogeneous heat distribution within urban areas. We develop a novel multi-scale metric of identifying emerging heat clusters at various percentile-based thermal thresholds and refer to them collectively as intra-Urban Heat Islets. Using remotely sensed Land Surface Temperatures, we first quantify the spatial organization of heat islets in cities at various degrees of sprawl and densification. We then condense the size, spacing, and intensity information about heterogeneous clusters into probability distributions that can be described using single scaling exponents (denoted by β, $${{\boldsymbol{\Lambda }}}_{{\boldsymbol{s}}{\boldsymbol{c}}{\boldsymbol{o}}{\boldsymbol{r}}{\boldsymbol{e}}}$$Λscore, and λ, respectively). This allows for a seamless comparison of the heat islet characteristics across cities at varying spatial scales and improves on the traditional Surface Urban Heat Island (SUHI) Intensity as a bulk metric. Analysis of Heat Islet Size distributions demonstrates the emergence of two classes where the dense cities follow a Pareto distribution, and the sprawling cities show an exponential tempering of Pareto tail. This indicates a significantly reduced probability of encountering large heat islets for sprawling cities. In contrast, analysis of Heat Islet Intensity distributions indicates that while a sprawling configuration is favorable for reducing the mean SUHI Intensity of a city, for the same mean, it also results in higher local thermal extremes. This poses a paradox for urban designers in adopting expansion or densification as a growth trajectory to mitigate the UHI.


Author(s):  
Barrak Alahmad ◽  
Linda Powers Tomasso ◽  
Ali Al-Hemoud ◽  
Peter James ◽  
Petros Koutrakis

The global rise of urbanization has led to the formation of surface urban heat islands and surface urban cool islands. Urban heat islands have been shown to increase thermal discomfort, which increases heat stress and heat-related diseases. In Kuwait, a hyper-arid desert climate, most of the population lives in urban and suburban areas. In this study, we characterized the spatial distribution of land surface temperatures and investigated the presence of urban heat and cool effects in Kuwait. We used historical Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra satellite 8-day composite land surface temperature (LST) from 2001 to 2017. We calculated the average LSTs of the urban/suburban governorates and compared them to the average LSTs of the rural and barren lands. We repeated the analysis for daytime and nighttime LST. During the day, the temperature difference (urban/suburban minus versus governorates) was −1.1 °C (95% CI; −1.2, −1.00, p < 0.001) indicating a daytime urban cool island. At night, the temperature difference (urban/suburban versus rural governorates) became 3.6 °C (95% CI; 3.5, 3.7, p < 0.001) indicating a nighttime urban heat island. In light of rising temperatures in Kuwait, this work can inform climate change adaptation efforts in the country including urban planning policies, but also has the potential to improve temperature exposure assessment for future population health studies.


2021 ◽  
Author(s):  
Susanne A. Benz ◽  
Jennifer Burney

Here we use 1000-m satellite land surface temperature anomaly measurements to explore the distribution of the United States' urban heating burden, both at high resolution (within cities or counties) and at scale (across the whole contiguous United States). While a rich literature has documented neighborhood-level disparities in urban heat exposures in individual cities, data constraints have precluded comparisons across locations. Here, drawing on extreme summer urban heat measurements from all 1056 U.S. counties with more than 10 developed census tracts, we find that the poorest tracts (and those with lowest average education levels) within a county are significantly hotter than the richest (and more educated) neighborhoods for 76% of these counties (54\% for education); we also find that neighborhoods with higher Black, Hispanic, and Asian population shares are hotter than the more White, non-Hispanic areas in each county. This holds in counties with both large and small spreads in these population shares, and for 71% of all counties the significant racial urban heat disparities persist even when adjusting for income. Although individual locations have different histories that have contributed to race- and class-based geographies, we find that the physical features of the urban environments driving these heat exposure gradients are fairly uniform across the country. Systematically, the disproportionate heat exposures faced by minority communities are due to higher population density, more built-up neighborhoods, and less vegetation.


2020 ◽  
Vol 12 (11) ◽  
pp. 1783 ◽  
Author(s):  
Haiyong Ding ◽  
Luming Xu ◽  
Andrew J. Elmore ◽  
Yuli Shi

Impacts of urbanization and climate change on ecosystems are widely studied, but these drivers of change are often difficult to isolate from each other and interactions are complicated. Ecosystem responses to each of these drivers are perhaps most clearly seen in phenology changes due to global climate change (warming climate) and urbanization (heat island effect). The phenology of vegetation can influence many important ecological processes, including primary production, evapotranspiration, and plant fitness. Therefore, evaluating the interacting effects of urbanization and climate change on vegetation phenology has the potential to provide information about the long-term impact of global change. Using remotely sensed time series of vegetation on the Yangtze River Delta in China, this study evaluated the impacts of rapid urbanization and climate change on vegetation phenology along an urban to rural gradient over time. Phenology markers were extracted annually from an 18-year time series by fitting the asymmetric Gaussian function model. Thermal remote sensing acquired at daytime and nighttime was used to explore the relationship between land surface temperature and vegetation phenology. On average, the spring phenology marker was 9.6 days earlier and the autumn marker was 6.63 days later in urban areas compared with rural areas. The spring phenology of urban areas advanced and the autumn phenology delayed over time. Across space and time, warmer spring daytime and nighttime land surface temperatures were related to earlier spring, while autumn daytime and nighttime land surface temperatures were related to later autumn phenology. These results suggest that urbanization, through surface warming, compounds the effect of climate change on vegetation phenology.


Urban Climate ◽  
2020 ◽  
Vol 31 ◽  
pp. 100540 ◽  
Author(s):  
Emmanuel Matsaba Ochola ◽  
Elham Fakharizadehshirazi ◽  
Aggrey Ochieng Adimo ◽  
John Bosco Mukundi ◽  
John Mwibanda Wesonga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document