scholarly journals Precision Machining of Nimonic C 263 Super AlloyUsing WEDM

Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 590
Author(s):  
Katerina Mouralova ◽  
Libor Benes ◽  
Josef Bednar ◽  
Radim Zahradnicek ◽  
Tomas Prokes ◽  
...  

Wire electrical discharge machining (WEDM) is an unconventional and very efficient technology for precision machining of the Nimonic C 263 super alloy, which is very widespread, especially in the energy, aerospace and automotive industries. Due to electrical discharge, defects in the form of cracks or burned cavities often occur on the machined surfaces, which negatively affect the correct functionality and service life of the manufactured components. To increase the efficiency of the machining of Nimonic C 263 using WEDM, in this study, extensive design of experiments was carried out, monitoring input factors in the form of machine parameters like Pulse off time, Gap voltage, Discharge current, Pulse on time and Wire feed, the output of which was comprehensive information about the behaviour of such machined surfaces, which allowed the optimization of the entire machining process. Thus, the optimization of the Cutting speed was performed in relation to the quality of the machined surface and the machining accuracy, as well as an analysis of the chemical composition of the machined surfaces and a detailed analysis of the lamella using a transmission electron microscope. A detailed study of the occurrence of surface or subsurface defects was also included. It was found that with the help of complex optimization tools, it is possible to significantly increase the efficiency of the machining of the Nimonic C 263 super alloy and achieve both financial savings in the form of shortened machine time and increasing the quality of machined surfaces.

2015 ◽  
Vol 14 (03) ◽  
pp. 189-202 ◽  
Author(s):  
V. Vikram Reddy ◽  
P. Madar Valli ◽  
A. Kumar ◽  
Ch. Sridhar Reddy

In the present work, an investigation has been made into the electrical discharge machining process during machining of precipitation hardening stainless steel PH17-4. Taguchi method is used to formulate the experimental layout, to analyze the effect of each process parameter on machining characteristics and to predict the optimal choice for each electrical discharge machining process parameters namely, peak current, pulse on time and pulse off time that give up optimal process performance characteristics such as material removal rate, surface roughness, tool wear rate and surface hardness. To identify the significance of parameters on measured response, the analysis of variance has been done. It is found that parameters peak current and pulse on time have the significant affect on material removal rate, surface roughness, tool wear rate and surface hardness. However, parameter pulse off time has significant affect on material removal rate. Confirmation tests are conducted at their respective optimum parametric settings to verify the predicted optimal values of performance characteristics.


2018 ◽  
Vol 14 (4) ◽  
pp. 115-124 ◽  
Author(s):  
Shukry H. Aghdeab ◽  
Nareen Hafidh Obaeed ◽  
Marwa Qasim Ibraheem

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on the surface roughness in the present research. 27 samples were run by using CNC-EDM machine which used for cutting steel 304 with dielectric solution of gas oil by supplied DC current values (10, 20, and 30A). Voltage of (140V) uses to cut 1.7mm thickness of the steel and use the copper electrode. The result from this work is useful to be implemented in industry to reduce the time and cost of Ra prediction. It is observed from response table and response graph that the applied current and pulse on time have the most influence parameters of surface roughness while pulse off time has less influence parameter on it. The supreme and least surface roughness, which is achieved from all the 27 experiments is (4.02 and 2.12µm), respectively. The qualitative assessment reveals that the surface roughness increases as the applied current and pulse on time increases


2018 ◽  
Vol 7 (3.34) ◽  
pp. 256
Author(s):  
S Rajamanickam ◽  
R Palani ◽  
V Sathyamoorthy ◽  
Muppala Jagadeesh Varma ◽  
Shaik Shaik Mahammad Althaf ◽  
...  

As on today, Electrical Discharge Machining (EDM) is world famous unconventional machining process for electrically conductive materials. In this project work, Ti-6Al-4V is performed in electrical discharge machining using differently shaped (circular and convex) copper electrode. The machining parameters considered are the pulse on- time, pulse off-time, voltage and current to investigate machining characteristics like material removal rate and tool wear rate. Taguchi method is applied to frame experimental design. Ti-6Al-4V finds wide usage in industrial applications such as marine, aerospace, bio-medical and so on. 


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Md. Ashikur Rahman Khan ◽  
M. M. Rahman

Electrical discharge machining (EDM) produces complex shapes and permits high-precision machining of any hard or difficult-to-cut materials. The performance characteristics such as surface roughness and microstructure of the machined face are influenced by numerous parameters. The selection of parameters becomes complicated. Thus, the surface roughness (Ra) and microstructure of the machined surface in EDM on Grade 6 titanium alloy are studied is this study. The experimental work is performed using copper as electrode material. The polarity of the electrode is maintained as negative. The process parameters taken into account in this study are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo-voltage (Sv). A smooth surface finish is found at low pulse current, small on-time and high off-time. The servo-voltage affects the roughness diversely however, a finish surface is found at 80 V Sv. Craters, cracks and globules of debris are appeared in the microstructure of the machined part. The size and degree of craters as well as cracks increase with increasing in energy level. Low discharge energy yields an even surface. This approach helps in selecting proper process parameters resulting in economic EDM machining. 


Author(s):  
Neeraj Sharma ◽  
Tilak Raj ◽  
Kamal Kumar Jangra

NiTi is a shape memory alloy, mostly employed in cardiovascular stents, orthopedic implants, orthodontic wires, micro-electromechanical systems and so on. The effective and net shape machining of NiTi is very critical for excellent response of this material in medical and other applications. The present experimental work on wire electrical discharge machining process identifies the influence of process parameters that affect the cutting rate, dimensional shift and surface roughness while machining of porous nickel–titanium (Ni40Ti60) alloy. Porous Ni40Ti60 alloy was produced in-house using powder metallurgy technique. Response surface methodology–based central composite rotatable design has been used for the planning of experiments on wire electrical discharge machining. Empirical relations have been developed between the process parameters (pulse on-time, pulse off-time, servo voltage and peak current) and response variables. Desirability approach has been used for optimizing the three response variables simultaneously. Confirmation experiments were also performed at the optimized settings and reflect a close agreement between the predicted and experimental values (percentage error varies from −6.13% to +6.85%). Using wire electrical discharge machining, NiTi alloy can be machined easily and successfully in single-cutting operation, but after the first cut in wire electrical discharge machining, a surface projection appears on work surface which is the unmachined material on work surface.


2014 ◽  
Vol 657 ◽  
pp. 291-295 ◽  
Author(s):  
Vasile Ciubotariu ◽  
Adrian Câcu ◽  
Ioana Andreea Rotundu ◽  
Marius Marian Cucoş ◽  
Margareta Coteaţă

There are various electrical discharge machining techniques and experimental researches could be necessary in order to establish the operating conditions for an optimal machining process. Some theoretical considerations concerning the process of generating the surface asperities as a consequence of the electrical discharge machining process were elaborated. Experimental method was applied in order to evaluate influence exerted by some input factors (pulse on time, pulse off time, average intensity of electric current) on certain surface roughness parameters (Ra, Rz, Ry and Rq). One developed an experimental research by using a copper tool electrode and a workpiece made of high speed steel, in accordance with the requirements specific to a complete factorial experiment with three independent variables at three levels. A ram electrical discharge machine was used as machining equipment. One measured the surface roughness parameters specific to the machined surfaces. Empirical mathematical models of type power functions were established by using the method of least squares.


Author(s):  
Katerina Mouralova ◽  
Ales Polzer ◽  
Libor Benes ◽  
Josef Bednar ◽  
Radim Zahradnicek ◽  
...  

The unconventional technology of wire electrical discharge machining is a key engineering technology, designed primarily for machining of conventionally difficult machine materials. One of them is nickel alloys, which are majorly used in the aerospace and energy industries. The subject of research in this study was specifically the B1914 nickel-based superalloy, which was subjected to many analyses leading to an overall optimization of its machining using wire electrical discharge machining. In order to determine the effect of machine parameters setup (pulse off time, gap voltage, discharge current, pulse on time and wire feed) on cutting speed, topography, morphology, surface and subsurface layer quality, an extensive Box–Behnken design experiment consisting of 46 rounds was carried out. The analyses of the condition of the surface and subsurface layers were performed, including their chemical composition and changes caused by wire electrical discharge machining. It was found out that the factors like pulse off time, discharge current and pulse on time have the greatest effect on the cutting speed, although from the point of view of surface topography the parameter pulse off time is not significant. The remaining two parameters cause the cutting speed to act against the surface topography i.e. with the increasing cutting speed, the surface topography gets worse and vice versa.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2533
Author(s):  
Rakesh Chaudhari ◽  
Jay Vora ◽  
L.N.López de Lacalle ◽  
Sakshum Khanna ◽  
Vivek K. Patel ◽  
...  

In the current scenario of manufacturing competitiveness, it is a requirement that new technologies are implemented in order to overcome the challenges of achieving component accuracy, high quality, acceptable surface finish, an increase in the production rate, and enhanced product life with a reduced environmental impact. Along with these conventional challenges, the machining of newly developed smart materials, such as shape memory alloys, also require inputs of intelligent machining strategies. Wire electrical discharge machining (WEDM) is one of the non-traditional machining methods which is independent of the mechanical properties of the work sample and is best suited for machining nitinol shape memory alloys. Nano powder-mixed dielectric fluid for the WEDM process is one of the ways of improving the process capabilities. In the current study, Taguchi’s L16 orthogonal array was implemented to perform the experiments. Current, pulse-on time, pulse-off time, and nano-graphene powder concentration were selected as input process parameters, with material removal rate (MRR) and surface roughness (SR) as output machining characteristics for investigations. The heat transfer search (HTS) algorithm was implemented for obtaining optimal combinations of input parameters for MRR and SR. Single objective optimization showed a maximum MRR of 1.55 mm3/s, and minimum SR of 2.68 µm. The Pareto curve was generated which gives the optimal non-dominant solutions.


2018 ◽  
Vol 1 (1) ◽  
pp. 27-38
Author(s):  
Jun Qi Tan ◽  
Mohd Yazid Abu

The experimental carried out to aim at the selection of the best condition machining parameter combination for wire electrical discharge machining (WEDM) of titanium alloy (Ti–6Al–4V). By using Design Expert 10 software, a series of experiments were performed by selecting pulse-on time, pulse-off time, servo voltage and peak current as parameters. The responses that considered were cutting speed, material removal rate, sparking gap and surface roughness. Based on ANOVA analysis, the effect from the parameters on the responses was determined. The optimum machining parameters setting for the maximum cutting speed, minimum sparking gap and minimum surface roughness were found by proceed optimization experiment. Then, each optimization response had their own combination setting on WEDM to cut titanium alloy. 3D response surface graph such as dome and bowl shape represent maximum and minimum point for the solutions had shown in the report. Finally, predicted and actual value from the experiment have been calculated for validation.


2021 ◽  
Vol 8 ◽  
pp. 16
Author(s):  
Ipsita Nayak ◽  
Jaydev Rana

Wire electrical discharge machining (WEDM) is a popular non-conventional machining process used particularly for making extrusion dies, blanking punches, and tools especially requiring tight dimensional tolerances. Because of the process limitation, the rate of cutting and maintenance of close dimensional tolerance is a challenging task. Given the above facts, the present work has been focused on achieving the maximum possible cutting rate (VC) maintaining good dimensional accuracy and corner radius (RC). In the present research work, a multi-response optimization method (i.e. Taguchi based Utility approach) has been used to obtain an optimum set of input parameters such as pulse on time (TON), pulse off time (TOFF), servo voltage (SV), and wire feed rate (WF) resulting into a best overall cutting performance. Analysis of variance (ANOVA) is also used to find out the significant effect of each machining parameter on the cutting performance. The analysis reported in this paper will be helpful for industry personnel to select the best set of process parameters for achieving a good result without the use of any software or statistical analysis.


Sign in / Sign up

Export Citation Format

Share Document