scholarly journals Characterization and Corrosion Properties of Fluoride Conversion Coating Prepared on AZ31 Magnesium Alloy

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 675
Author(s):  
Juliána Dziková ◽  
Stanislava Fintová ◽  
Daniel Kajánek ◽  
Zuzana Florková ◽  
Jaromír Wasserbauer ◽  
...  

Wrought AZ31 magnesium alloy was used as the experimental material for fluoride conversion coating preparation in Na[BF4] molten salt. Two coating temperatures, 430 °C and 450 °C, and three coating times, 0.5, 2, and 8 h, were used for the coating preparation. A scanning electron microscope and energy-dispersive X-ray spectroscopy were used for an investigation of the surface morphology and the cross-sections of the prepared coatings including chemical composition determination. The corrosion resistance of the prepared specimens was investigated in terms of the potentiodynamic tests, electrochemical impedance spectroscopy and immersion tests in the environment of simulated body fluids at 37 ± 2 °C. The increase in the coating temperature and coating time resulted in higher coatings thicknesses and better corrosion resistance. Higher coating temperature was accompanied by smaller defects uniformly distributed on the coating surface. The defects were most probably created due to the reaction of the AlxMny intermetallic phase with Na[BF4] molten salt and/or with the product of its decomposition, BF3 compound, resulting in the creation of soluble Na3[AlF6] and AlF3 compounds, which were removed from the coating during the removal of the secondary Na[MgF3] layer. The negative influence of the AlxMny intermetallic phase was correlated to the particle size and thus the size of created defects.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Leon White ◽  
Youngmi Koo ◽  
Yeoheung Yun ◽  
Jagannathan Sankar

Plasma electrolytic oxidation (PEO) has been used in the past as a useful surface treatment technique to improve the anticorrosion properties of Mg alloys by forming protective layer. Coatings were prepared on AZ31 magnesium alloy in phosphate electrolyte with the addition of TiO2nanoparticles using plasma electrolytic oxidation (PEO). This present work focuses on developing a TiO2functional coating to create a novel electrophotocatalyst while observing the surface morphology, structure, composition, and corrosion resistance of the PEO coating. Microstructural characterization of the coating was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) followed by image analysis and energy dispersive spectroscopy (EDX). The corrosion resistance of the PEO treated samples was evaluated with electrochemical impedance spectroscopy (EIS) and DC polarization tests in 3.5 wt.% NaCl. The XRD pattern shows that the components of the oxide film include Mg from the substrate as well as MgO and Mg2TiO4due to the TiO2nanoparticle addition. The results show that the PEO coating with TiO2nanoparticles did improve the corrosion resistance when compared to the AZ31 substrate alloy.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1357 ◽  
Author(s):  
Jaromír Wasserbauer ◽  
Martin Buchtík ◽  
Jakub Tkacz ◽  
Stanislava Fintová ◽  
Jozef Minda ◽  
...  

The corrosion behavior of duplex Ni-P coatings deposited on AZ91 magnesium alloy was studied. The electroless deposition process of duplex Ni-P coating consisted in the preparation of low-phosphorus Ni-P coating (5.7 wt.% of P), which served as a bond coating and high-phosphorus Ni-P coating (11.5 wt.% of P) deposited on it. The duplex Ni-P coatings with the thickness of 25, 50, 75 and 100 µm were deposited on AZ91 magnesium alloy. The electrochemical corrosion behavior of coated AZ91 magnesium alloy was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization method in 0.1 M NaCl. Obtained results showed a significant improvement in the corrosion resistance of coated specimens when compared to uncoated AZ91 magnesium alloy. From the results of the immersion tests in 3.5 wt.% NaCl, 10% solution of HCl and NaOH and 5% neutral salt spray, a noticeable increase in the corrosion resistance with the increasing thickness of the Ni-P coating was observed.


2008 ◽  
Vol 373-374 ◽  
pp. 460-463 ◽  
Author(s):  
X.G. Han ◽  
P. Li ◽  
X.P. Zhu ◽  
M.K. Lei

The microarc oxidation (MAO) films on AZ31 magnesium alloy were modified by high-intensity pulsed ion beam (HIPIB) at an ion current density of 200 A/cm2 with 1-5 shots. The modified MAO films presented a corrosion resistance superior to that of the original films. Scanning electron microscopy (SEM) observation revealed that a sealing layer was formed on the MAO films by HIPIB irradiation. The corrosion behaviors of the MAO films in 3.5 % NaCl solution were characterized by using electrochemical impedance spectroscopy (EIS). The noticeable improvement in the corrosion resistance of MAO films is attributed to the blocking effect of the sealing layer that hinders the process of electrolyte penetrating the MAO films to the magnesium alloy.


2017 ◽  
Vol 750 ◽  
pp. 124-128
Author(s):  
Yunus Turen ◽  
Didem Güzel ◽  
Huseyin Zengin ◽  
Yavuz Sun ◽  
Hayrettin Ahlatci

In this study, the effect of Sn addition on corrosion resistance of as-cast and hot rolled AZ31 magnesium alloy was investigated. Sn additions were made by 0.2 wt%, 0.5 wt% and 1 wt%. An electric resistance furnace was used to produce alloys. Hot rolling process was performed at 350 °C by 40% thickness reduction at one rolling pass. Microstructure characterizations were performed by optical (OM) and scanning electron microscope (SEM). Immersion tests and electrochemical analyses were performed to investigate the corrosion resistance of the alloys. A 3.5% NaCl working solution at room temperature was used in both corrosion tests. The results showed that Sn addition decreased the primary dentrite size and restricted the growth of secondary dentritic arm. The as-cast structures transformed to dynamically recrystallized grain structures after hot-rolling process in all the alloys. Corrosion resistance of AZ31 magnesium alloy tended to decrease with Sn addition. This decrease was more clear in homogenized and hot-rolled states while there were some flactuations in as-cast states.


2011 ◽  
Vol 686 ◽  
pp. 21-25
Author(s):  
Xian Long Cao ◽  
Fu Sheng Pan ◽  
Hong Da Deng ◽  
Wei Cai

This present work investigated the corrosion behavior of AZ31 magnesium alloy substrates pre-treated with bis-[triethoxysilylpropyl] tetrasulfide silane modified with cerium nitrate. The corrosion behavior of the pre-treated substrates in 0.005M sodium chloride solutions was assessed by potentiodynamic polarization, open circuit potential and electrochemical impedance spectroscopy (EIS). The results showed that the silane pre-treatments improved the corrosion resistance of the AZ31 magnesium alloy substrates in the presence of chloride ions. Especially the addition of cerium nitrate played an important role in reducing the corrosion activity.


RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 24586-24590 ◽  
Author(s):  
Huan Zhao ◽  
Shu Cai ◽  
Zetao Ding ◽  
Ming Zhang ◽  
Yan Li ◽  
...  

A simple method has been proposed for the preparation of magnesium phosphate conversion coating on a magnesium alloy (AZ31) to achieve protection against fast degradation in an implant environment.


Sign in / Sign up

Export Citation Format

Share Document