scholarly journals Methods and Products for the Conservation of Vandalized Urban Art Murals

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1304
Author(s):  
Andrea Macchia ◽  
Margarida Castro ◽  
Claudia Curbelo ◽  
Laura Rivaroli ◽  
Sara Capriotti ◽  
...  

The possibility of contemporary mural paintings to be “tagged” by vandals, with spray and/or markers, represents a serious problem for the conservation of urban art. The present study aims to define the applicability of a protective coating on murals’ surface to preserve them against vandalism. The research has been focused on anti-graffiti products currently used in the field of cultural heritage conservation. These products represent an optimum start point to preserve mural artwork from vandal actions. The commercially available anti-graffiti products have been compared with an innovative product, PRO-ART, specifically formulated by YOCOCU in collaboration with Pelicoat, for the conservation of murals. At the same time, it has tested the cleaning of contemporary murals by using different mixtures of solvents and surfactants. The experimentations have been carried out on external walls, followed by the conducting of in situ tests (application tests, empirical evaluations and colorimetric analysis), as well as laboratory investigations (contact angle and optical/electronic microscopy).

MANUSYA ◽  
2006 ◽  
Vol 9 (4) ◽  
pp. 58-73 ◽  
Author(s):  
Wannasilpa Peerapun ◽  
Siriwan Silaphacharanan ◽  
Vira Sachakul

The Amphawa community houses the birth place of King Rama II Nowadays this community is still water-based and one can see Thai-styled and row houses, canal-side walkways and ladders leading down to the canal. Against this backdrop are coconut plantations and mixed orchards of pomelo, lychee, etc. Amphawa is also rich in Thai culture featuring mural paintings, traditional dance and music and architecture. Water-based ways of life are very much alive as evidenced by water traffic. The objective of the project is to modify and apply the SAVE and CHIP techniques devised by the Danish Government as part of Cultural Heritage Conservation, awareness-raising campaign and demonstration of conservation campaign of traditional buildings ranging from government buildings, Thai-styled and contemporary houses and row houses to the rehabilitation of a canal landscape. As a result, local people are better aware of the advantages of cultural heritage conservation while the project enhances the preparedness of the community to accommodate ecological tourism. Finally, the experience gained from this project can also be applied to other areas of Thailand.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4743
Author(s):  
Tomasz Janoszek ◽  
Zbigniew Lubosik ◽  
Lucjan Świerczek ◽  
Andrzej Walentek ◽  
Jerzy Jaroszewicz

The paper presents the results of experimental and model tests of transport of dispersed fluid droplets forming a cloud of aerosol in a stream of air ventilating a selected section of the underground excavation. The excavation selected for testing is part of the ventilation network of the Experimental Mine Barbara of the Central Mining Institute. For given environmental conditions, such as temperature, pressure, relative humidity, and velocity of air, the distribution of aerosol droplet changes in the mixture of air and water vapor along the excavation at a distance was measured at 10 m, 25 m, and 50 m from the source of its emission. The source of aerosol emission in the excavation space was a water nozzle that was located 25 m from the inlet (inlet) of the excavation. The obtained results of in situ tests were related to the results of numerical calculations using computational fluid dynamics (CFD). Numerical calculations were performed using Ansys-Fluent and Ansys-CFX software. The dimensions and geometry of the excavation under investigation are presented. The authors describe the adopted assumptions and conditions for the numerical model and discuss the results of the numerical solution.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2313
Author(s):  
Maria Luisa Beconcini ◽  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Benedetta Puccini

The evaluation of the shear behavior of masonry walls is a first fundamental step for the assessment of existing masonry structures in seismic zones. However, due to the complexity of modelling experimental behavior and the wide variety of masonry types characterizing historical structures, the definition of masonry’s mechanical behavior is still a critical issue. Since the possibility to perform in situ tests is very limited and often conflicting with the needs of preservation, the characterization of shear masonry behavior is generally based on reference values of mechanical properties provided in modern structural codes for recurrent masonry categories. In the paper, a combined test procedure for the experimental characterization of masonry mechanical parameters and the assessment of the shear behavior of masonry walls is presented together with the experimental results obtained on three stone masonry walls. The procedure consists of a combination of three different in situ tests to be performed on the investigated wall. First, a single flat jack test is executed to derive the normal compressive stress acting on the wall. Then a double flat jack test is carried out to estimate the elastic modulus. Finally, the proposed shear test is performed to derive the capacity curve and to estimate the shear modulus and the shear strength. The first results obtained in the experimental campaign carried out by the authors confirm the capability of the proposed methodology to assess the masonry mechanical parameters, reducing the uncertainty affecting the definition of capacity curves of walls and consequently the evaluation of seismic vulnerability of the investigated buildings.


2019 ◽  
Vol 19 (1) ◽  
pp. 107-121

Abstract In April and May 2011, Qingdao Municipal Institute of Cultural Heritage Conservation and Archaeology and Huangdao District Museum excavated the Tushantun Cemetery located in Huangdao District, Qingdao City. The excavation cleared three mounds and recovered seven tombs beneath them. Of these seven tombs, M6 and M8 are vertical shaft stone pit tombs with brick-timber coffin chambers and ramp passages, the burial receptacles of which are nested double-coffin and double-coffin chamber, and the grave goods unearthed from which include bronzes, jades, lacquered wares, pottery and porcelain wares and implements made of bone and horn (turtle scute). The types and styles of the tombs and grave goods all show that the dates of these two tombs are the late Western Han to the early Eastern Han Dynasty. The excavation of these tombs provided important physical materials for the studies on the burial system, geography and material culture in the coastal area of southeastern Shandong during the Han Dynasty.


2021 ◽  
Vol 6 (7) ◽  
pp. 99
Author(s):  
Christian Overgaard Christensen ◽  
Jacob Wittrup Schmidt ◽  
Philip Skov Halding ◽  
Medha Kapoor ◽  
Per Goltermann

In proof-loading of concrete slab bridges, advanced monitoring methods are required for identification of stop criteria. In this study, Two-Dimensional Digital Image Correlation (2D DIC) is investigated as one of the governing measurement methods for crack detection and evaluation. The investigations are deemed to provide valuable information about DIC capabilities under different environmental conditions and to evaluate the capabilities in relation to stop criterion verifications. Three Overturned T-beam (OT) Reinforced Concrete (RC) slabs are used for the assessment. Of these, two are in situ strips (0.55 × 3.6 × 9.0 m) cut from a full-scale OT-slab bridge with a span of 9 m and one is a downscaled slab tested under laboratory conditions (0.37 × 1.7 × 8.4 m). The 2D DIC results includes full-field plots, investigation of the time of crack detection and monitoring of crack widths. Grey-level transformation was used for the in situ tests to ensure sufficient readability and results comparable to the laboratory test. Crack initiation for the laboratory test (with speckle pattern) and in situ tests (plain concrete surface) were detected at intervals of approximately 0.1 mm to 0.3 mm and 0.2 mm to 0.3 mm, respectively. Consequently, the paper evaluates a more qualitative approach to DIC test results, where crack indications and crack detection can be used as a stop criterion. It was furthermore identified that crack initiation was reached at high load levels, implying the importance of a target load.


2021 ◽  
Vol 48 ◽  
pp. 119-128
Author(s):  
A. Kioussi ◽  
M. Karoglou ◽  
E. Protopapadakis ◽  
A. Doulamis ◽  
E. Ksinopoulou ◽  
...  

2021 ◽  
Vol 16 (4) ◽  
pp. 121-137
Author(s):  
Michele Fabio Granata

The case-study of a steel bowstring bridge set in a marine environment and highly damaged by corrosion is presented. The bridge was built in 2004 and was repainted for corrosion protection in 2010. Despite the recent construction and the maintenance interventions, many structural elements like hangers are highly damaged by corrosion with decreasing performance in terms of serviceability and ultimate limit states. A deep investigation was carried out in order to assess the bridge and to establish the necessary retrofit actions to be carried out in the near future. In-situ tests reveal the reduced performance of the original steel in terms of strength and corrosion protection, together with the inefficiency of the successive maintenance interventions. The paper presents assessment of the bridge and retrofit measures, including replacement of the hangers and galvanization through thermal spray coating technology, in order to increase its service life. The results of the investigations and the intervention measures are outlined and discussed.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1131
Author(s):  
Soonkie Nam ◽  
Marte Gutierrez ◽  
Panayiotis Diplas ◽  
John Petrie

This paper critically compares the use of laboratory tests against in situ tests combined with numerical seepage modeling to determine the hydraulic conductivity of natural soil deposits. Laboratory determination of hydraulic conductivity used the constant head permeability and oedometer tests on undisturbed Shelby tube and block soil samples. The auger hole method and Guelph permeameter tests were performed in the field. Groundwater table elevations in natural soil deposits with different hydraulic conductivity values were predicted using finite element seepage modeling and compared with field measurements to assess the various test results. Hydraulic conductivity values obtained by the auger hole method provide predictions that best match the groundwater table’s observed location at the field site. This observation indicates that hydraulic conductivity determined by the in situ test represents the actual conditions in the field better than that determined in a laboratory setting. The differences between the laboratory and in situ hydraulic conductivity values can be attributed to factors such as sample disturbance, soil anisotropy, fissures and cracks, and soil structure in addition to the conceptual and procedural differences in testing methods and effects of sample size.


Sign in / Sign up

Export Citation Format

Share Document