scholarly journals Experimental Evaluation of Shear Behavior of Stone Masonry Wall

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2313
Author(s):  
Maria Luisa Beconcini ◽  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Benedetta Puccini

The evaluation of the shear behavior of masonry walls is a first fundamental step for the assessment of existing masonry structures in seismic zones. However, due to the complexity of modelling experimental behavior and the wide variety of masonry types characterizing historical structures, the definition of masonry’s mechanical behavior is still a critical issue. Since the possibility to perform in situ tests is very limited and often conflicting with the needs of preservation, the characterization of shear masonry behavior is generally based on reference values of mechanical properties provided in modern structural codes for recurrent masonry categories. In the paper, a combined test procedure for the experimental characterization of masonry mechanical parameters and the assessment of the shear behavior of masonry walls is presented together with the experimental results obtained on three stone masonry walls. The procedure consists of a combination of three different in situ tests to be performed on the investigated wall. First, a single flat jack test is executed to derive the normal compressive stress acting on the wall. Then a double flat jack test is carried out to estimate the elastic modulus. Finally, the proposed shear test is performed to derive the capacity curve and to estimate the shear modulus and the shear strength. The first results obtained in the experimental campaign carried out by the authors confirm the capability of the proposed methodology to assess the masonry mechanical parameters, reducing the uncertainty affecting the definition of capacity curves of walls and consequently the evaluation of seismic vulnerability of the investigated buildings.

2019 ◽  
Vol 220 ◽  
pp. 503-515 ◽  
Author(s):  
António Arêde ◽  
Celeste Almeida ◽  
Cristina Costa ◽  
Aníbal Costa

Buildings ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 18 ◽  
Author(s):  
José Carlos Domingues ◽  
Tiago Miguel Ferreira ◽  
Romeu Vicente ◽  
João Negrão

Essential for any intervention in existing buildings, a thorough knowledge of both structural and material characteristics is even more important in the case of traditional stone masonry buildings, due both to the variability of this technology’s properties and the degradation buildings might have sustained. In Portugal, a number of in situ and laboratory experimental campaigns has allowed us in recent years to expand the knowledge on the mechanical properties of stone masonry walls. Nevertheless, the existence of different wall typologies built with the same material necessitates that this characterization takes into account the various regional constructive cultures. This paper presents the results obtained through an in-situ characterization campaign carried out in the old urban center of Viseu, for which there is no information available in the literature. Granite stone masonry walls of two different buildings were analyzed and characterized considering their geometrical and material features, contributing to the identification of stone masonry typologies present in the city’s old urban center. Flat-jack testing yielded resistance and deformability parameters to be used both in safety evaluation and intervention design. The properties obtained can be said to be consistent with those deriving from other experimental campaigns, conducted in granite walls of different typologies, throughout the country. Simultaneously, relevant conclusions about the use of flat-jacks to characterize this type of stone masonry were drawn.


2021 ◽  
Author(s):  
Lorenzo Scandolo ◽  
Stefano Podestà

Abstract The evaluation of structural safety derives from the knowledge of material properties. In case of existent masonry building, the definition of reliable mechanical parameters could be a very difficult task to be achieved. For this reason, an estimation of these values is useful, for example it is the first phase of the knowledge process, for simplified mechanical model or when NTD test is the only possibility.The transversal connection in masonry panels is a technological detail that affects the static and seismic behavior and could significantly increase the strength of the element.In this paper the effect of transversal connection in double-leaf brickwork masonry panels is evaluated by diagonal compression tests. To achieve this goal, a new set-up was designed to load each leaf independently.The results have shown an increment of about 20% in strength if transversal connection is present. If the leaves have very different mechanical parameters, the tests highlight an unexpected behavior.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2965 ◽  
Author(s):  
Alessandro Franco ◽  
Paolo Conti

The performance of ground heat exchanger systems depends on the knowledge of the thermal parameters of the ground, such as thermal conductivity, capacity, and diffusivity. The knowledge of these parameters often requires quite accurate experimental analysis, known as a thermal response test (TRT). In this paper, after a general analysis of the various available types of TRT and a study of the theoretical basics of the method, we explore the perspective of the definition of a simplified routine method of analysis based on the combination of a particular version of TRT and the routine geotechnical tests for the characterization of soil stratigraphy and the ground characteristics. Geotechnical analyses are indeed mandatory before the construction of new buildings, even if limited to 30 m below the ground level or foundation base when piles are needed. The idea of developing TRT in connection with geotechnical test activity has the objective of promoting the widespread use of in situ experimental analysis and reducing TRT costs and time. The considerations presented in the present paper lead to reconsidering a particular variety of the TRT, in particular, the versions known as thermal response test while drilling (TRTWD) and TRT using heating cables (HC-TRT).


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 664 ◽  
Author(s):  
Iwona Karbownik ◽  
Olga Rac-Rumijowska ◽  
Marta Fiedot-Toboła ◽  
Tomasz Rybicki ◽  
Helena Teterycz

The paper presents a method of modifying polyacrylonitrile (PAN) fibers using polyaniline (PANI). The PAN fibers were doped with polyaniline that was obtained in two different ways. The first consisted of doping a spinning solution with polyaniline that was synthesized in an aqueous solution (PAN/PANI blended), and the second involved the synthesis of polyaniline directly in the spinning solution (PAN/PANI in situ). The obtained fibers were characterized by the methods: X-ray powder diffraction (XRD), scanning electron microscope (SEM), fourier-transform infrared spectroscopy (FTIR), thermogravimetry (TG) and differential scanning calorimetry (DSC). Analysis of the results showed strong interactions between the nitrile groups of polyacrylonitrile and polyaniline in the PAN/PANI in situ fibers. The results of mechanical strength tests indicated that the performance of the PAN/PANI mixture significantly improved the mechanical parameters of polyaniline, although these fibers had a weaker strength than the unmodified PAN fibers. The fibers obtained as a result of the addition of PANI to PAN were dielectric, whereas the PANI-synthesized in situ were characterized by a mass-specific resistance of 5.47 kΩg/cm2.


2013 ◽  
Vol 43 ◽  
pp. 266-277 ◽  
Author(s):  
I. Lombillo ◽  
C. Thomas ◽  
L. Villegas ◽  
J.P. Fernández-Álvarez ◽  
J. Norambuena-Contreras

1981 ◽  
Vol 6 ◽  
Author(s):  
Hans-Peter Hermansson ◽  
Hilbert Christensen ◽  
Lars Werme ◽  
Kaija Ollila ◽  
Rune Lundqwist

ABSTRACTThe planned Swedish KBS glass corrosion investigation program comprises experiments with inactive glasses containing simulated waste, prolonged in-situ tests, the characterization of corrosion products, immiscibility studies, and corrosion experiments with “hot” glass.This presentation gives a short description of the entire program. It focuses thereafter on some recent leaching results with the inactive KBS glass qualities ABS 39 and ABS 41, which were leached in a manner similar to the PNL MCC–1 test procedure.


2020 ◽  
Vol 10 (2) ◽  
pp. 468 ◽  
Author(s):  
Zhifeng Qi ◽  
Zhongqiang Shan ◽  
Weihao Ma ◽  
Linan Li ◽  
Shibin Wang ◽  
...  

Nanoscale silicon film electrodes in Li-ion battery undergo great deformations leading to electrochemical and mechanical failures during repeated charging-discharging cycles. In-situ experimental characterization of the stress/strain in those electrodes still faces big challenges due to remarkable complexity of stress/strain evolution while it is still hard to predict the association between the electrode cycle life and the measurable mechanical parameters. To quantificationally investigate the evolution of the mechanical parameters, we develop a new full field 3D measurement method combining digital image correlation with laser confocal profilometry and propose a strain criterion of the failure based on semi-quantitative analysis via mean strain gradient (MSG). The experimental protocol and results illustrate that the revolution of MSG correlates positively with battery capacity decay, which may inspire future studies in the field of film electrodes.


Sign in / Sign up

Export Citation Format

Share Document