scholarly journals SIRT1 Promotes Osteogenic Differentiation in Human Dental Pulp Stem Cells through Counteracting the Activation of STAT3

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1353
Author(s):  
Dan Zhao ◽  
Wen Kang ◽  
Yiwen Wang ◽  
Jiuyu Ge ◽  
Jianfeng Huang ◽  
...  

Human dental pulp stem cells (hDPSCs), which are characterized by self-renewal capacity and the ability of multilineage differentiation, have gained increased attention in regenerative medicine recently. Histone acetylation modulator proteins (HAMPs) are a protein family that mediates the modification and identification of histone acetylation and participates in various critical cellular processes. Here, we comprehensively surveyed the expression profile of HAMPs during osteoblast differentiation of hDPSCs and found that the HDAC class III pathway was upregulated, whereas the signal transducer and activator of transcription 3 (STAT3) signaling was downregulated during osteogenesis. Further laboratory research demonstrated that Sirtuin-1 (SIRT1), a class III HDAC, was upregulated and STAT3 activation was downregulated during osteogenic differentiation. SIRT1 counteracted the activation of STAT3 to promote osteogenic differentiation of hDPSCs at 7 and 21 days in both Western blot assay and chemical staining, which highlights the promising utility of SIRT1 activators in hDPSCs-based therapies for bone augmentation strategies and provides clinical insights that may lead to the development of osteogenic agents.

2020 ◽  
Vol 10 (7) ◽  
pp. 978-986
Author(s):  
Haiquan Yue ◽  
Yidan Guo ◽  
Juan Song ◽  
Ruimin Liu

The paper is committed to uncovering the effect of miR-217 on osteogenic differentiation of human dental pulp stem cells (hDPSCs) and its mechanism. hDPSCs were separated from human dental pulp tissues for measurement of stemness. The osteogenic differentiation of hDPSCs was induced in an osteogenic induction medium. The hDPSCs were transfected with miR-217 mimic, miR-217 inhibitor and/or sh-SIRT1 accordingly. The expressions of miR-217 and SIRT1 were detected in hDPSCs after cell transfection and osteogenic differentiation. Calcium nodules were showed by alizarin red staining. Moreover, the expressions of osteogenic differentiation-related genes were also assessed. The binding of miR-217 to SIRT1 was predicted on starBase and further determined by dual-luciferase reporter assay. Down-regulated miR-217 and up-regulated SIRT1 were found during osteogenic differentiation of hDPSCs. The osteogenic differentiation of hDPSCs was suppressed after transfection of miR-217 mimic or sh-SIRT1 while promoted by miR-217 inhibition. Taken together, miR-217 can suppress osteogenic differentiation of hDPSCs by negatively regulating SIRT1.


2021 ◽  
Vol 400 (2) ◽  
pp. 112466
Author(s):  
J.F. Huo ◽  
M.L. Zhang ◽  
X.X. Wang ◽  
D.H. Zou

2015 ◽  
Vol 21 (3-4) ◽  
pp. 729-739 ◽  
Author(s):  
Jonas Jensen ◽  
David Christian Evar Kraft ◽  
Helle Lysdahl ◽  
Casper Bindzus Foldager ◽  
Muwan Chen ◽  
...  

2019 ◽  
Vol 26 (3) ◽  
pp. 1677-1685 ◽  
Author(s):  
Bing-Chang Xin ◽  
Qi-Shan Wu ◽  
Song Jin ◽  
Ai-Hua Luo ◽  
De-Gang Sun ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Liangkun Xie ◽  
Zheng Guan ◽  
Mingzhu Zhang ◽  
Sha Lyu ◽  
Nattawut Thuaksuban ◽  
...  

Human dental pulp stem cells (DPSCs) hold great promise in bone regeneration. However, the exact mechanism of osteogenic differentiation of DPSCs remains unknown, especially the role of exosomes played in. The DPSCs were cultured and received osteogenic induction; then, exosomes from osteogenic-induced DPSCs (OI-DPSC-Ex) at different time intervals were isolated and sequenced for circular RNA (circRNA) expression profiles. Gradually, increased circular lysophosphatidic acid receptor 1 (circLPAR1) expression was found in the OI-DPSC-Ex coincidentally with the degree of osteogenic differentiation. Meanwhile, results from osteogenic differentiation examinations showed that the OI-DPSC-Ex had osteogenic effect on the recipient homotypic DPSCs. To investigate the mechanism of exosomal circLPAR1 on osteogenic differentiation, we verified that circLPAR1 could competently bind to hsa-miR-31, by eliminating the inhibitory effect of hsa-miR-31 on osteogenesis, therefore promoting osteogenic differentiation of the recipient homotypic DPSCs. Our study showed that exosomal circRNA played an important role in osteogenic differentiation of DPSCs and provided a novel way of utilization of exosomes for the treatment of bone deficiencies.


2019 ◽  
Vol 47 (1) ◽  
pp. 3431-3437 ◽  
Author(s):  
Mahdieh Alipour ◽  
Marziyeh Aghazadeh ◽  
Abolfazl Akbarzadeh ◽  
Zahra Vafajoo ◽  
Zahra Aghazadeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document