scholarly journals Exosomal circLPAR1 Promoted Osteogenic Differentiation of Homotypic Dental Pulp Stem Cells by Competitively Binding to hsa-miR-31

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Liangkun Xie ◽  
Zheng Guan ◽  
Mingzhu Zhang ◽  
Sha Lyu ◽  
Nattawut Thuaksuban ◽  
...  

Human dental pulp stem cells (DPSCs) hold great promise in bone regeneration. However, the exact mechanism of osteogenic differentiation of DPSCs remains unknown, especially the role of exosomes played in. The DPSCs were cultured and received osteogenic induction; then, exosomes from osteogenic-induced DPSCs (OI-DPSC-Ex) at different time intervals were isolated and sequenced for circular RNA (circRNA) expression profiles. Gradually, increased circular lysophosphatidic acid receptor 1 (circLPAR1) expression was found in the OI-DPSC-Ex coincidentally with the degree of osteogenic differentiation. Meanwhile, results from osteogenic differentiation examinations showed that the OI-DPSC-Ex had osteogenic effect on the recipient homotypic DPSCs. To investigate the mechanism of exosomal circLPAR1 on osteogenic differentiation, we verified that circLPAR1 could competently bind to hsa-miR-31, by eliminating the inhibitory effect of hsa-miR-31 on osteogenesis, therefore promoting osteogenic differentiation of the recipient homotypic DPSCs. Our study showed that exosomal circRNA played an important role in osteogenic differentiation of DPSCs and provided a novel way of utilization of exosomes for the treatment of bone deficiencies.

2020 ◽  
Vol 10 (7) ◽  
pp. 978-986
Author(s):  
Haiquan Yue ◽  
Yidan Guo ◽  
Juan Song ◽  
Ruimin Liu

The paper is committed to uncovering the effect of miR-217 on osteogenic differentiation of human dental pulp stem cells (hDPSCs) and its mechanism. hDPSCs were separated from human dental pulp tissues for measurement of stemness. The osteogenic differentiation of hDPSCs was induced in an osteogenic induction medium. The hDPSCs were transfected with miR-217 mimic, miR-217 inhibitor and/or sh-SIRT1 accordingly. The expressions of miR-217 and SIRT1 were detected in hDPSCs after cell transfection and osteogenic differentiation. Calcium nodules were showed by alizarin red staining. Moreover, the expressions of osteogenic differentiation-related genes were also assessed. The binding of miR-217 to SIRT1 was predicted on starBase and further determined by dual-luciferase reporter assay. Down-regulated miR-217 and up-regulated SIRT1 were found during osteogenic differentiation of hDPSCs. The osteogenic differentiation of hDPSCs was suppressed after transfection of miR-217 mimic or sh-SIRT1 while promoted by miR-217 inhibition. Taken together, miR-217 can suppress osteogenic differentiation of hDPSCs by negatively regulating SIRT1.


2021 ◽  
Vol 400 (2) ◽  
pp. 112466
Author(s):  
J.F. Huo ◽  
M.L. Zhang ◽  
X.X. Wang ◽  
D.H. Zou

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 716
Author(s):  
Simona Delle Delle Monache ◽  
Fanny Pulcini ◽  
Roberta Frosini ◽  
Vincenzo Mattei ◽  
Vincenzo Nicola Talesa ◽  
...  

Methylglyoxal (MG) is a potent precursor of glycative stress (abnormal accumulation of advanced glycation end products, AGEs), a relevant condition underpinning the etiology of several diseases, including those of the oral cave. At present, synthetic agents able to trap MG are known; however, they have never been approved for clinical use because of their severe side effects. Hence, the search of bioactive natural scavengers remains a sector of strong research interest. Here, we investigated whether and how oleuropein (OP), the major bioactive component of olive leaf, was able to prevent MG-dependent glycative stress in human dental pulp stem cells (DPSCs). The cells were exposed to OP at 50 µM for 24 h prior to the administration of MG at 300 µM for additional 24 h. We found that OP prevented MG-induced glycative stress and DPSCs impairment by restoring the activity of Glyoxalase 1 (Glo1), the major detoxifying enzyme of MG, in a mechanism involving the redox-sensitive transcription factor Nrf2. Our results suggest that OP holds great promise for the development of preventive strategies for MG-derived AGEs-associated oral diseases and open new paths in research concerning additional studies on the protective potential of this secoiridoid.


2015 ◽  
Vol 21 (3-4) ◽  
pp. 729-739 ◽  
Author(s):  
Jonas Jensen ◽  
David Christian Evar Kraft ◽  
Helle Lysdahl ◽  
Casper Bindzus Foldager ◽  
Muwan Chen ◽  
...  

2019 ◽  
Vol 26 (3) ◽  
pp. 1677-1685 ◽  
Author(s):  
Bing-Chang Xin ◽  
Qi-Shan Wu ◽  
Song Jin ◽  
Ai-Hua Luo ◽  
De-Gang Sun ◽  
...  

2019 ◽  
Vol 47 (1) ◽  
pp. 3431-3437 ◽  
Author(s):  
Mahdieh Alipour ◽  
Marziyeh Aghazadeh ◽  
Abolfazl Akbarzadeh ◽  
Zahra Vafajoo ◽  
Zahra Aghazadeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document