scholarly journals An Incompressible Smoothed Particle Hydrodynamics (ISPH) Model of Direct Laser Interference Patterning

Computation ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Cornelius Demuth ◽  
Andrés Fabián Lasagni

Functional surfaces characterised by periodic microstructures are sought in numerous technological applications. Direct laser interference patterning (DLIP) is a technique that allows the fabrication of microscopic periodic features on different materials, e.g., metals. The mechanisms effective during nanosecond pulsed DLIP of metal surfaces are not yet fully understood. In the present investigation, the heat transfer and fluid flow occurring in the metal substrate during the DLIP process are simulated using a smoothed particle hydrodynamics (SPH) methodology. The melt pool convection, driven by surface tension gradients constituting shear stresses according to the Marangoni boundary condition, is solved by an incompressible SPH (ISPH) method. The DLIP simulations reveal a distinct behaviour of the considered substrate materials stainless steel and high-purity aluminium. In particular, the aluminium substrate exhibits a considerably deeper melt pool and remarkable velocity magnitudes of the thermocapillary flow during the patterning process. On the other hand, convection is less pronounced in the processing of stainless steel, whereas the surface temperature is consistently higher. Marangoni convection is therefore a conceivable effective mechanism in the structuring of aluminium at moderate fluences. The different character of the melt pool flow during DLIP of stainless steel and aluminium is confirmed by experimental observations.

2021 ◽  
Author(s):  
Mikhael El-Khoury ◽  
Bogdan Voisiat ◽  
Tim Kunze ◽  
Andrés Fabián Lasagni

Abstract Uniform periodic microstructures formation over large areas is generally challenging in Direct Laser Interference Patterning (DLIP) due to the Gaussian laser beam intensity distribution inherent to most commercial laser sources. In this work, a diffractive fundamental beam-mode shaper (FBS) element is implemented in a four-beam DLIP optical setup to generate a square-shaped top-hat intensity distribution in the interference volume. The interference patterns produced by a standard configuration and the developed setup are measured and compared. In particular, the impact of both laser intensity distributions on process throughput as well as fill-factor is investigated by measuring the resulting microstructure height with height error over the structured surface. It is demonstrated that by utilizing top-hat-shaped interference patterns, it is possible to produce on average 44.8 % deeper structures with up to 60 % higher homogeneity at the same throughput. Moreover, the presented approach allows the production of microstructures with comparable height and homogeneity compared to the Gaussian intensity distribution with increased throughput of 53%.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Amirsaman Farrokhpanah ◽  
Babak Samareh ◽  
Javad Mostaghimi

Equilibrium contact angle of liquid drops over horizontal surfaces has been modeled using smoothed particle hydrodynamics (SPH). The model is capable of accurate implementation of contact angles to stationary and moving contact lines. In this scheme, the desired value for stationary or dynamic contact angle is used to correct the profile near the triple point. This is achieved by correcting the surface normals near the contact line and also interpolating the drop profile into the boundaries. Simulations show that a close match to the chosen contact angle values can be achieved for both stationary and moving contact lines. This technique has proven to reduce the amount of nonphysical shear stresses near the triple point and to enhance the convergence characteristics of the solver.


2020 ◽  
Vol 123 ◽  
pp. 105954 ◽  
Author(s):  
Alexander Peter ◽  
Adrian H.A. Lutey ◽  
Sebastian Faas ◽  
Luca Romoli ◽  
Volkher Onuseit ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 855
Author(s):  
Theresa Jähnig ◽  
Cornelius Demuth ◽  
Andrés Fabián Lasagni

The formation of melt and its spread in materials is the focus of many high temperature processes, for example, in laser welding and cutting. Surface active elements alter the surface tension gradient and therefore influence melt penetration depth and pool width. This study describes the application of direct laser interference patterning (DLIP) for structuring steel surfaces with diverse contents of the surface active element sulphur, which affects the melt convection pattern and the pool shape during the process. The laser fluence used is varied to analyse the different topographic features that can be produced depending on the absorbed laser intensity and the sulphur concentration. The results show that single peak geometries can be produced on substrates with sulphur contents lower than 300 ppm, while structures with split peaks form on higher sulphur content steels. The peak formation is explained using related conceptions of thermocapillary convection in weld pools. Numerical simulations based on a smoothed particle hydrodynamics (SPH) model are employed to further investigate the influence of the sulphur content in steel on the melt pool convection during nanosecond single-pulsed DLIP.


Sign in / Sign up

Export Citation Format

Share Document