scholarly journals Toward Smart Lockdown: A Novel Approach for COVID-19 Hotspots Prediction Using a Deep Hybrid Neural Network

Computers ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 99
Author(s):  
Sultan Daud Khan ◽  
Louai Alarabi ◽  
Saleh Basalamah

COVID-19 caused the largest economic recession in the history by placing more than one third of world’s population in lockdown. The prolonged restrictions on economic and business activities caused huge economic turmoil that significantly affected the financial markets. To ease the growing pressure on the economy, scientists proposed intermittent lockdowns commonly known as “smart lockdowns”. Under smart lockdown, areas that contain infected clusters of population, namely hotspots, are placed on lockdown, while economic activities are allowed to operate in un-infected areas. In this study, we proposed a novel deep learning prediction framework for the accurate prediction of hotpots. We exploit the benefits of two deep learning models, i.e., Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) and propose a hybrid framework that has the ability to extract multi time-scale features from convolutional layers of CNN. The multi time-scale features are then concatenated and provide as input to 2-layers LSTM model. The LSTM model identifies short, medium and long-term dependencies by learning the representation of time-series data. We perform a series of experiments and compare the proposed framework with other state-of-the-art statistical and machine learning based prediction models. From the experimental results, we demonstrate that the proposed framework beats other existing methods with a clear margin.

Author(s):  
Osama A. Osman ◽  
Hesham Rakha

Distracted driving (i.e., engaging in secondary tasks) is an epidemic that threatens the lives of thousands every year. Data collected from vehicular sensor technologies and through connectivity provide comprehensive information that, if used to detect driver engagement in secondary tasks, could save thousands of lives and millions of dollars. This study investigates the possibility of achieving this goal using promising deep learning tools. Specifically, two deep neural network models (a multilayer perceptron neural network model and a long short-term memory networks [LSTMN] model) were developed to identify three secondary tasks: cellphone calling, cellphone texting, and conversation with adjacent passengers. The Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) time series data, collected using vehicle sensor technology, were used to train and test the model. The results show excellent performance for the developed models, with a slight improvement for the LSTMN model, with overall classification accuracies ranging between 95 and 96%. Specifically, the models are able to identify the different types of secondary tasks with high accuracies of 100% for calling, 96%–97% for texting, 90%–91% for conversation, and 95%–96% for the normal driving. Based on this performance, the developed models improve on the results of a previous model developed by the author to classify the same three secondary tasks, which had an accuracy of 82%. The model is promising for use in in-vehicle driving assistance technology to report engagement in unlawful tasks or alert drivers to take over control in level 1 and 2 automated vehicles.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yao Li

Faults occurring in the production line can cause many losses. Predicting the fault events before they occur or identifying the causes can effectively reduce such losses. A modern production line can provide enough data to solve the problem. However, in the face of complex industrial processes, this problem will become very difficult depending on traditional methods. In this paper, we propose a new approach based on a deep learning (DL) algorithm to solve the problem. First, we regard these process data as a spatial sequence according to the production process, which is different from traditional time series data. Second, we improve the long short-term memory (LSTM) neural network in an encoder-decoder model to adapt to the branch structure, corresponding to the spatial sequence. Meanwhile, an attention mechanism (AM) algorithm is used in fault detection and cause identification. Third, instead of traditional biclassification, the output is defined as a sequence of fault types. The approach proposed in this article has two advantages. On the one hand, treating data as a spatial sequence rather than a time sequence can overcome multidimensional problems and improve prediction accuracy. On the other hand, in the trained neural network, the weight vectors generated by the AM algorithm can represent the correlation between faults and the input data. This correlation can help engineers identify the cause of faults. The proposed approach is compared with some well-developed fault diagnosing methods in the Tennessee Eastman process. Experimental results show that the approach has higher prediction accuracy, and the weight vector can accurately label the factors that cause faults.


2021 ◽  
Vol 35 (1) ◽  
pp. 1-10
Author(s):  
Senthil Kumar Paramasivan

In the modern era, deep learning is a powerful technique in the field of wind energy forecasting. The deep neural network effectively handles the seasonal variation and uncertainty characteristics of wind speed by proper structural design, objective function optimization, and feature learning. The present paper focuses on the critical analysis of wind energy forecasting using deep learning based Recurrent neural networks (RNN) models. It explores RNN and its variants, such as simple RNN, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN models. The recurrent neural network processes the input time series data sequentially and captures well the temporal dependencies exist in the successive input data. This review investigates the RNN models of wind energy forecasting, the data sources utilized, and the performance achieved in terms of the error measures. The overall review shows that the deep learning based RNN improves the performance of wind energy forecasting compared to the conventional techniques.


Author(s):  
Tahani Aljohani ◽  
Alexandra I. Cristea

Massive Open Online Courses (MOOCs) have become universal learning resources, and the COVID-19 pandemic is rendering these platforms even more necessary. In this paper, we seek to improve Learner Profiling (LP), i.e. estimating the demographic characteristics of learners in MOOC platforms. We have focused on examining models which show promise elsewhere, but were never examined in the LP area (deep learning models) based on effective textual representations. As LP characteristics, we predict here the employment status of learners. We compare sequential and parallel ensemble deep learning architectures based on Convolutional Neural Networks and Recurrent Neural Networks, obtaining an average high accuracy of 96.3% for our best method. Next, we predict the gender of learners based on syntactic knowledge from the text. We compare different tree-structured Long-Short-Term Memory models (as state-of-the-art candidates) and provide our novel version of a Bi-directional composition function for existing architectures. In addition, we evaluate 18 different combinations of word-level encoding and sentence-level encoding functions. Based on these results, we show that our Bi-directional model outperforms all other models and the highest accuracy result among our models is the one based on the combination of FeedForward Neural Network and the Stack-augmented Parser-Interpreter Neural Network (82.60% prediction accuracy). We argue that our prediction models recommended for both demographics characteristics examined in this study can achieve high accuracy. This is additionally also the first time a sound methodological approach toward improving accuracy for learner demographics classification on MOOCs was proposed.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 618-627
Author(s):  
Weixing Song ◽  
Jingjing Wu ◽  
Jianshe Kang ◽  
Jun Zhang

Abstract The aim of this study was to improve the low accuracy of equipment spare parts requirement predicting, which affects the quality and efficiency of maintenance support, based on the summary and analysis of the existing spare parts requirement predicting research. This article introduces the current latest popular long short-term memory (LSTM) algorithm which has the best effect on time series data processing to equipment spare parts requirement predicting, according to the time series characteristics of spare parts consumption data. A method for predicting the requirement for maintenance spare parts based on the LSTM recurrent neural network is proposed, and the network structure is designed in detail, the realization of network training and network prediction is given. The advantages of particle swarm algorithm are introduced to optimize the network parameters, and actual data of three types of equipment spare parts consumption are used for experiments. The performance comparison of predictive models such as BP neural network, generalized regression neural network, wavelet neural network, and squeeze-and-excitation network prove that the new method is effective and provides an effective method for scientifically predicting the requirement for maintenance spare parts and improving the quality of equipment maintenance.


Over the recent years, the term deep learning has been considered as one of the primary choice for handling huge amount of data. Having deeper hidden layers, it surpasses classical methods for detection of outlier in wireless sensor network. The Convolutional Neural Network (CNN) is a biologically inspired computational model which is one of the most popular deep learning approaches. It comprises neurons that self-optimize through learning. EEG generally known as Electroencephalography is a tool used for investigation of brain function and EEG signal gives time-series data as output. In this paper, we propose a state-of-the-art technique designed by processing the time-series data generated by the sensor nodes stored in a large dataset into discrete one-second frames and these frames are projected onto a 2D map images. A convolutional neural network (CNN) is then trained to classify these frames. The result improves detection accuracy and encouraging.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1078
Author(s):  
Ruxandra Stoean ◽  
Catalin Stoean ◽  
Miguel Atencia ◽  
Roberto Rodríguez-Labrada ◽  
Gonzalo Joya

Uncertainty quantification in deep learning models is especially important for the medical applications of this complex and successful type of neural architectures. One popular technique is Monte Carlo dropout that gives a sample output for a record, which can be measured statistically in terms of average probability and variance for each diagnostic class of the problem. The current paper puts forward a convolutional–long short-term memory network model with a Monte Carlo dropout layer for obtaining information regarding the model uncertainty for saccadic records of all patients. These are next used in assessing the uncertainty of the learning model at the higher level of sets of multiple records (i.e., registers) that are gathered for one patient case by the examining physician towards an accurate diagnosis. Means and standard deviations are additionally calculated for the Monte Carlo uncertainty estimates of groups of predictions. These serve as a new collection where a random forest model can perform both classification and ranking of variable importance. The approach is validated on a real-world problem of classifying electrooculography time series for an early detection of spinocerebellar ataxia 2 and reaches an accuracy of 88.59% in distinguishing between the three classes of patients.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 25 ◽  
Author(s):  
Said Jadid Abdulkadir ◽  
Hitham Alhussian ◽  
Muhammad Nazmi ◽  
Asim A Elsheikh

Forecasting time-series data are imperative especially when planning is required through modelling using uncertain knowledge of future events. Recurrent neural network models have been applied in the industry and outperform standard artificial neural networks in forecasting, but fail in long term time-series forecasting due to the vanishing gradient problem. This study offers a robust solution that can be implemented for long-term forecasting using a special architecture of recurrent neural network known as Long Short Term Memory (LSTM) model to overcome the vanishing gradient problem. LSTM is specially designed to avoid the long-term dependency problem as their default behavior. Empirical analysis is performed using quantitative forecasting metrics and comparative model performance on the forecasted outputs. An evaluation analysis is performed to validate that the LSTM model provides better forecasted outputs on Standard & Poor’s 500 Index (S&P 500) in terms of error metrics as compared to other forecasting models.  


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 668 ◽  
Author(s):  
S. Poornima ◽  
M. Pushpalatha

Prediction of rainfall is one of the major concerns in the domain of meteorology. Several techniques have been formerly proposed to predict rainfall based on statistical analysis, machine learning and deep learning techniques. Prediction of time series data in meteorology can assist in decision-making processes carried out by organizations responsible for the prevention of disasters. This paper presents Intensified Long Short-Term Memory (Intensified LSTM) based Recurrent Neural Network (RNN) to predict rainfall. The neural network is trained and tested using a standard dataset of rainfall. The trained network will produce predicted attribute of rainfall. The parameters considered for the evaluation of the performance and the efficiency of the proposed rainfall prediction model are Root Mean Square Error (RMSE), accuracy, number of epochs, loss, and learning rate of the network. The results obtained are compared with Holt–Winters, Extreme Learning Machine (ELM), Autoregressive Integrated Moving Average (ARIMA), Recurrent Neural Network and Long Short-Term Memory models in order to exemplify the improvement in the ability to predict rainfall.


Sign in / Sign up

Export Citation Format

Share Document