scholarly journals Hardness-Depth Relationship with Temperature Effect for Single Crystals—A Theoretical Analysis

Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 112
Author(s):  
Hao Liu ◽  
Long Yu ◽  
Xiazi Xiao

In this paper, a mechanistic model is developed to address the effect of temperature on the hardness-depth relationship of single crystals. Two fundamental hardening mechanisms are considered in the hardness model, including the temperature dependent lattice friction and network dislocation interaction. The rationality and accuracy of the developed model is verified by comparing with four different sets of experimental data, and a reasonable agreement is achieved. In addition, it is concluded that the moderated indentation size effect at elevated temperatures is ascribed to the accelerated expansion of the plasticity affected region that results in the decrease of the density of geometrically necessary dislocations.

1967 ◽  
Vol 17 (01/02) ◽  
pp. 112-119 ◽  
Author(s):  
L Dintenfass ◽  
M. C Rozenberg

SummaryA study of blood coagulation was carried out by observing changes in the blood viscosity of blood coagulating in the cone-in-cone viscometer. The clots were investigated by microscopic techniques.Immediately after blood is obtained by venepuncture, viscosity of blood remains constant for a certain “latent” period. The duration of this period depends not only on the intrinsic properties of the blood sample, but also on temperature and rate of shear used during blood storage. An increase of temperature decreases the clotting time ; also, an increase in the rate of shear decreases the clotting time.It is confirmed that morphological changes take place in blood coagula as a function of the velocity gradient at which such coagulation takes place. There is a progressive change from the red clot to white thrombus as the rates of shear increase. Aggregation of platelets increases as the rate of shear increases.This pattern is maintained with changes of temperature, although aggregation of platelets appears to be increased at elevated temperatures.Intravenously added heparin affects the clotting time and the aggregation of platelets in in vitro coagulation.


2021 ◽  
Vol 11 (10) ◽  
pp. 4619
Author(s):  
Petra Šipošová ◽  
Martina Koňuchová ◽  
Ľubomír Valík ◽  
Monika Trebichavská ◽  
Alžbeta Medveďová

The study of microbial growth in relation to food environments provides essential knowledge for food quality control. With respect to its significance in the dairy industry, the growth of Geotrichum candidum isolate J in milk without and with 1% NaCl was investigated under isothermal conditions ranging from 6 to 37 °C. The mechanistic model by Baranyi and Roberts was used to fit the fungal counts over time and to estimate the growth parameters of the isolate. The effect of temperature on the growth of G. candidum in milk was modelled with the cardinal models, and the cardinal temperatures were calculated as Tmin = −3.8–0.0 °C, Topt = 28.0–34.6 °C, and Tmax = 35.2–37.2 °C. The growth of G. candidum J was slightly faster in milk with 1% NaCl and in temperature regions under 21 °C. However, in a temperature range that was close to the optimum, its growth was slightly inhibited by the lowered water activity level. The present study provides useful cultivation data for understanding the behaviour of G. candidum in milk and can serve as an effective tool for assessing the risk of fungal spoilage, predicting the shelf life of dairy products, or assessing the optimal conditions for its growth in relation to the operational parameters in dairy practices.


2012 ◽  
Vol 531-532 ◽  
pp. 122-126
Author(s):  
Hai Bin Zhou ◽  
Chuan Shuang Hu ◽  
Jian Hui Zhou

Wood is being used extensively in timber construction in China. In fire-resistant design for timber construction, the main goal is to ensure that enough structural integrity is maintained during a fire to prevent structure collapse. It is important to understand its structural performance when exposed to elevated temperatures and loaded by stress levels. To study the interaction effect of Chinese larch wood, a total of 72 small clear wood samples were observed under constant stress levels when the wood temperature was elevated. The results indicated that Chinese larch wood was more susceptible to the coupling effect of temperature and stress. The interaction promoted a temporary stable flexural structure to collapse during a short exposure time.


2015 ◽  
Vol 2 (3) ◽  
pp. 939-968
Author(s):  
S. Nakano ◽  
K. Suzuki ◽  
K. Kawamura ◽  
F. Parrenin ◽  
T. Higuchi

Abstract. A technique for estimating the age–depth relationship in an ice core and evaluating its uncertainty is presented. The age–depth relationship is mainly determined by the accumulation of snow at the site of the ice core and the thinning process due to the horizontal stretching and vertical compression of ice layers. However, since neither the accumulation process nor the thinning process are fully understood, it is essential to incorporate observational information into a model that describes the accumulation and thinning processes. In the proposed technique, the age as a function of depth is estimated from age markers and δ18O data. The estimation is achieved using the particle Markov chain Monte Carlo (PMCMC) method, in which the sequential Monte Carlo (SMC) method is combined with the Markov chain Monte Carlo method. In this hybrid method, the posterior distributions for the parameters in the models for the accumulation and thinning processes are computed using the Metropolis method, in which the likelihood is obtained with the SMC method. Meanwhile, the posterior distribution for the age as a function of depth is obtained by collecting the samples generated by the SMC method with Metropolis iterations. The use of this PMCMC method enables us to estimate the age–depth relationship without assuming either linearity or Gaussianity. The performance of the proposed technique is demonstrated by applying it to ice core data from Dome Fuji in Antarctica.


2011 ◽  
Vol 23 (1) ◽  
pp. 53 ◽  
Author(s):  
Ping Yang ◽  
Li Meng ◽  
Yisong Hu ◽  
Zude Zhao ◽  
Xueping Ren

Orientation mapping based on electron back scattering diffraction technique was applied to reveal the distributions of disorientations and rotation axes of grains caused by plastic slip and twinning during channel die compression in magnesium alloy ZA31. In addition, the orientations of dynamically recrystallized grains and deformed grains were separated and compared with respect to their initial textures. The relationship of strain and {1012} twin amount was determined quantitatively by referring to twin orientations. The reasons leading to the observed phenomena are analyzed and discussed.


2005 ◽  
Vol 125 (7) ◽  
pp. 294-301
Author(s):  
Yoshitada Isono ◽  
Junichi Tada ◽  
Toshinori Unno ◽  
Susumu Sugiyama ◽  
Toshiyuki Toriyama

Sign in / Sign up

Export Citation Format

Share Document