scholarly journals Experimental Sensing and DFT Mechanism of Zn(II) Complex for Highly Sensitive and Selective Detection of Acetone

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 324
Author(s):  
Mohd. Muddassir ◽  
Mohammad Usman ◽  
Abdullah Alarifi ◽  
Mohd. Afzal ◽  
Khulud Abdullah Alshali ◽  
...  

In the present work, a new Zn(II) perchlorate complex with 2,2’–bipyridyl of formulation {[Zn(bipy)2(H2O)](ClO4)2} (1) was obtained and well analyzed. This chemosensor was evaluated as a selective sensor for acetone among the several different organic solvents(CH3OH, EtOH, i–PrOH, i–BuOH, CHCl3, CH2Cl2, CCl4, C6H6, C7H8, C8H10, C2H3N, C3H7NO, C4H8O2, C3H6O3) in a fluorescence turn–off response in accordance with theoretical calculations. Sensing experiments were performed at ambient temperature which shows the acetone molecule distinctly reduces transfer of energy barrier to complex 1 and hence, produces remarkable luminescent quenching. Also, the weak intermolecular hydrogen–bonding interactions thanks to the presence of various hydrogen bonding donors and acceptors, exist between ligand molecules, which were broken during fluorescence, resulting in quenching. The stoichiometry ratio and association constant were evaluated using Benesi–Hildebrand relation giving 1:1 stoichiometry between complex 1 and acetone. Additionally, DFT results can also explicate the significant response on complex 1 upon addition of acetone. This work is vital in a new loom for the detection of acetone and other ketones.

Author(s):  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohammad Usman

A Zn(II) perchlorate complex has been prepared and characterized by single X-ray crystallography, nuclear magnetic resonance spectroscopy, thermogravimetric analysis, infrared spectroscopy, elemental analysis, and UV-vis spectroscopy. The complex crystallizes in the monoclinic space group P21/c (Z = 4) with a pentacoordinated zinc center. Interestingly, the Zn complex was found be to a potential fluorophore that could sense acetone and other ketones with high selectivity and sensitivity.


2020 ◽  
Vol 56 (63) ◽  
pp. 8992-8995
Author(s):  
Ramo Nazarian ◽  
Hossein Reza Darabi ◽  
Kioumars Aghapoor ◽  
Rohoullah Firouzi ◽  
Hani Sayahi

Nanoparticles N,N′-(pyridine-2,6-diyl)bis(2-(2,4-dichlorophenoxy)acetamide) (1) exhibited an “on–off” emission response toward cyanide (CN−) ions in 100% aqueous solutions based on AIE features.


2021 ◽  
Author(s):  
Thufail M. Ismail ◽  
Neetha Mohan ◽  
P. K. Sajith

Interaction energy (Eint) of hydrogen bonded complexes of nitroxide radicals can be assessed in terms of the deepest minimum of molecular electrostatic potential (Vmin).


RSC Advances ◽  
2020 ◽  
Vol 10 (64) ◽  
pp. 39033-39036
Author(s):  
Ayano Awatani ◽  
Masaaki Suzuki

Triply β-dicarbonyl-embedded 1,3,5-triazine derivatives result in formation of circular linkage of resonance-assisted hydrogen bonding interactions, which can be regarded as well-delocalized resonance hybrids.


Soft Matter ◽  
2021 ◽  
Author(s):  
Aliaksei Aliakseyeu ◽  
Victoria Albright ◽  
Danielle Yarbrough ◽  
Samantha Hernandez ◽  
Qing Zhou ◽  
...  

This work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid)...


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1908
Author(s):  
Hai Li ◽  
Sooman Lim

Self-polarized piezoelectric devices have attracted significant interest owing to their fabrication processes with low energy consumption. Herein, novel poling-free piezoelectric nanogenerators (PENGs) based on self-polarized polyvinylidene difluoride (PVDF) induced by the incorporation of different surface-modified barium titanate nanoparticles (BTO NPs) were prepared via a fully printing process. To reveal the effect of intermolecular interactions between PVDF and NP surface groups, BTO NPs were modified with hydrophilic polydopamine (PDA) and hydrophobic 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) to yield PDA-BTO and PFD-BTO, respectively. This study demonstrates that the stronger hydrogen bonding interactions existed in PFD-BTO/PVDF composite film comparative to the PDA-BTO/PVDF composite film induced the higher β-phase formation (90%), which was evidenced by the XRD, FTIR and DSC results, as well as led to a better dispersion of NPs and improved mechanical properties of composite films. Consequently, PFD-BTO/PVDF-based PENGs without electric poling exhibited a significantly improved output voltage of 5.9 V and power density of 102 μW cm−3, which was 1.8 and 2.9 times higher than that of PDA-BTO/PVDF-based PENGs, respectively. This study provides a promising approach for advancing the search for high-performance, self-polarized PENGs in next-generation electric and electronic industries.


Sign in / Sign up

Export Citation Format

Share Document