scholarly journals Silver(I) and Copper(I) Complexation with Decachloro-Closo-Decaborate Anion

Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 389
Author(s):  
Varvara V. Avdeeva ◽  
Grigoriy A. Buzanov ◽  
Elena A. Malinina ◽  
Nikolay T. Kuznetsov ◽  
Anna V. Vologzhanina

A series of complexation reactions of silver(I) and copper(I) in the presence of a polyhedral weakly coordinating [B10Cl10]2− anion has been carried out. The effect of the solvent and the presence of Ph3P on the composition and structure of the reaction product were studied. Eight novel complexes were obtained and characterized by 11B Nuclear magnetic resonance, Infra-Red, and Raman spectroscopies as well as powder and single-crystal X-ray diffraction techniques. The [B10Cl10]2− anion demonstrated weaker coordinating ability towards coinage metals than [B10H10]2− at similar reaction conditions. The [B10Cl10]2− anion remains unreacted in the copper(I) complexation reaction, while in the absence of competing ligands, we obtained the first complexes containing decachloro-closo-decaborate anion directly coordinated by the metal atom. The bonding between metal atoms and the boron cluster anions was studied using the atomic Hirshfeld surfaces. Besides edge and face coordination of the polyhedral anion, this method allowed us to reveal the Ag–Ag bond in crystal of {Ag2(DMF)2[B10Cl10]}n, the presence of which was additionally supported by the Raman spectroscopy data.

2018 ◽  
Author(s):  
Laura Abad Galán ◽  
Alexandre N. Sobolev ◽  
Eli Zysman-Colman ◽  
Mark Ogden ◽  
Massimiliano Massi

<i>β</i>-Triketonates have been recently used as chelating ligands for lanthanoid ions, presenting unique structures varying from polynuclear assemblies to polymers. In an effort to overcome low solubility of the complexes of tribenzoylmethane, four <i>β</i>-triketones with higher lipophilicity were synthesised. Complexation reactions were performed for each of these molecules using different alkaline bases in alcoholic media. X-ray diffraction studies suggested that the ligands were undergoing decomposition under the reaction conditions. This is proposed to be caused by <i>in situ</i>retro-Claisen condensation reactions, consistent with two examples that have been reported previously. The lability of the lanthanoid cations in the presence of a varying set of potential ligands gave rise to structures where one, two, or three of the molecules involved in the retro-Claisen condensationreaction were linked to the lanthanoid centres. These results, along with measurements of ligand decomposition in the presence of base alone, suggest that using solvents of lower polarity will mimimise the impact of the retro-Claisen condensation in these complexes. <br>


2018 ◽  
Author(s):  
Laura Abad Galán ◽  
Alexandre N. Sobolev ◽  
Eli Zysman-Colman ◽  
Mark Ogden ◽  
Massimiliano Massi

<i>β</i>-Triketonates have been recently used as chelating ligands for lanthanoid ions, presenting unique structures varying from polynuclear assemblies to polymers. In an effort to overcome low solubility of the complexes of tribenzoylmethane, four <i>β</i>-triketones with higher lipophilicity were synthesised. Complexation reactions were performed for each of these molecules using different alkaline bases in alcoholic media. X-ray diffraction studies suggested that the ligands were undergoing decomposition under the reaction conditions. This is proposed to be caused by <i>in situ</i>retro-Claisen condensation reactions, consistent with two examples that have been reported previously. The lability of the lanthanoid cations in the presence of a varying set of potential ligands gave rise to structures where one, two, or three of the molecules involved in the retro-Claisen condensationreaction were linked to the lanthanoid centres. These results, along with measurements of ligand decomposition in the presence of base alone, suggest that using solvents of lower polarity will mimimise the impact of the retro-Claisen condensation in these complexes. <br>


2010 ◽  
Vol 65 (12) ◽  
pp. 1451-1456 ◽  
Author(s):  
Xing Liu ◽  
Xian-Hong Yin ◽  
Feng Zhang

Two vanadium oxides [Ni(en)2(H2O)2][Ni(en)3]2[V16O38Cl] ・3(H2O) (1) (en = ethylenediamine) and (H3O)2 V3O8 (2) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction. 1 consists of [Ni(en)2(H2O)2]2+ and [Ni(en)3]2+ cations, discrete [V16O38Cl]6− cluster anions and H2O molecules, while 2 consists of anionic mixed-valent V5+/V4+ vanadium oxide layers constructed from pairs of corner-sharing VVO4 tetrahedra and VIVO5 square pyramids, with H3O+ cations occupying the interlayer space. Both 1 and 2 were synthesized under the same reaction conditions but with different V/Ni molar ratios, which shows that the reactant stoichiometry of the system plays a key role in the formation of different structures in the products.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 330 ◽  
Author(s):  
Varvara V. Avdeeva ◽  
Anna V. Vologzhanina ◽  
Elena A. Malinina ◽  
Nikolai T. Kuznetsov

Dihydrogen bonds attract much attention as unconventional hydrogen bonds between strong donors of H-bonding and polyhedral (car)borane cages with delocalized charge density. Salts of closo-borate anions [B10H10]2− and [B12H12]2− with protonated organic ligands 2,2’-dipyridylamine (BPA), 1,10-phenanthroline (Phen), and rhodamine 6G (Rh6G) were selectively synthesized to investigate N−H...H−B intermolecular bonding. It was found that the salts contain monoprotonated and/or diprotonated N-containing cations at different ratios. Protonation of the ligands can be implemented in an acidic medium or in water because of hydrolysis of metal cations resulting in the release of H3O+ cations into the reaction solution. Six novel compounds were characterized by X-ray diffraction and FT-IR spectroscopy. It was found that strong dihydrogen bonds manifest themselves in FT-IR spectra that allows one to use this technique even in the absence of crystallographic data.


2011 ◽  
Vol 60 (8) ◽  
pp. 1608-1611 ◽  
Author(s):  
A. E. Dziova ◽  
V. V. Avdeeva ◽  
I. N. Polyakova ◽  
L. V. Goeva ◽  
E. A. Malinina ◽  
...  

2018 ◽  
Author(s):  
Laura Abad Galán ◽  
Alexandre N. Sobolev ◽  
Eli Zysman-Colman ◽  
Mark Ogden ◽  
Massimiliano Massi

<i>β</i>-Triketonates have been recently used as chelating ligands for lanthanoid ions, presenting unique structures varying from polynuclear assemblies to polymers. In an effort to overcome low solubility of the complexes of tribenzoylmethane, four <i>β</i>-triketones with higher lipophilicity were synthesised. Complexation reactions were performed for each of these molecules using different alkaline bases in alcoholic media. X-ray diffraction studies suggested that the ligands were undergoing decomposition under the reaction conditions. This is proposed to be caused by <i>in situ</i>retro-Claisen condensation reactions, consistent with two examples that have been reported previously. The lability of the lanthanoid cations in the presence of a varying set of potential ligands gave rise to structures where one, two, or three of the molecules involved in the retro-Claisen condensationreaction were linked to the lanthanoid centres. These results, along with measurements of ligand decomposition in the presence of base alone, suggest that using solvents of lower polarity will mimimise the impact of the retro-Claisen condensation in these complexes. <br>


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Claudia Maria Simonescu ◽  
Valentin Serban Teodorescu ◽  
Camelia Capatina

This paper presents the obtaining of copper sulfide CuS (covelite) from Cu(CH3COO)2.H2O and thioacetamide (TAA) system. The reaction was conducted in presence or absence of sodium-bis(2-ethylhexyl) sulfosuccinate (Na-AOT). The effects of various reaction parameters on the size and on the shape of nanoparticles have been examined. CuS obtained was characterized by X ray diffraction, IR spectroscopy, TEM � transmission electron microscopy and SAED selected area electron diffraction. The influence of surfactant to the shape and size of CuS (covellite) nanocrystals was established. The size of the nanocrystals varied from 10-60 nm depending on the reaction conditions such as quantity of surfactant.


2009 ◽  
Vol 48 (3) ◽  
pp. 889-901 ◽  
Author(s):  
Mark Nieuwenhuyzen ◽  
Kenneth R. Seddon ◽  
Francesc Teixidor ◽  
Alberto V. Puga ◽  
Clara Viñas

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2072
Author(s):  
Maria Antonia Tănase ◽  
Maria Marinescu ◽  
Petruta Oancea ◽  
Adina Răducan ◽  
Catalin Ionut Mihaescu ◽  
...  

In the present work, the properties of ZnO nanoparticles obtained using an eco-friendly synthesis (biomediated methods in microwave irradiation) were studied. Saponaria officinalis extracts were used as both reducing and capping agents in the green nanochemistry synthesis of ZnO. Inorganic zinc oxide nanopowders were successfully prepared by a modified hydrothermal method and plant extract-mediated method. The influence of microwave irradiation was studied in both cases. The size, composition, crystallinity and morphology of inorganic nanoparticles (NPs) were investigated using dynamic light scattering (DLS), powder X-ray diffraction (XRD), SEM-EDX microscopy. Tunings of the nanochemistry reaction conditions (Zn precursor, structuring agent), ZnO NPs with various shapes were obtained, from quasi-spherical to flower-like. The optical properties and photocatalytic activity (degradation of methylene blue as model compound) were also investigated. ZnO nanopowders’ antibacterial activity was tested against Gram-positive and Gram-negative bacterial strains to evidence the influence of the vegetal extract-mediated synthesis on the biological activity.


Molbank ◽  
10.3390/m1179 ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. M1179
Author(s):  
Eleftherios Halevas ◽  
Antonios Hatzidimitriou ◽  
Barbara Mavroidi ◽  
Marina Sagnou ◽  
Maria Pelecanou ◽  
...  

A novel Cu(II) complex based on the Schiff base obtained by the condensation of ortho-vanillin with gamma-aminobutyric acid was synthesized. The compounds are physico-chemically characterized by elemental analysis, HR-ESI-MS, FT-IR, and UV-Vis. The complex and the Schiff base ligand are further structurally identified by single crystal X-ray diffraction and 1H and 13C-NMR, respectively. The results suggest that the Schiff base are synthesized in excellent yield under mild reaction conditions in the presence of glacial acetic acid and the crystal structure of its Cu(II) complex reflects an one-dimensional polymeric compound. The molecular structure of the complex consists of a Cu(II) ion bound to two singly deprotonated Schiff base bridging ligands that form a CuN2O4 chelation environment, and a coordination sphere with a disordered octahedral geometry.


Sign in / Sign up

Export Citation Format

Share Document