scholarly journals Determination of Mechanical Characteristics for Fiber-Reinforced Concrete with Straight and Hooked Fibers

Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 545 ◽  
Author(s):  
Zuzana Marcalikova ◽  
Radim Cajka ◽  
Vlastimil Bilek ◽  
David Bujdos ◽  
Oldrich Sucharda

Fiber-reinforced concrete has a wide application in practice, and many fields of research are devoted to it. In most cases, this is a specific problem, i.e., the determination of the mechanical properties or the test method. However, wider knowledge of the effect of fiber in concrete is unavailable or insufficient for selected test series that cannot be compared. This article deals with the processing of a comprehensive test study and the impact of two types of fibers on the quantitative and qualitative parameters of concrete. Testing was performed for fiber dosages of 0, 40, 75, and 110 kg/m3. The fibers were hooked and straight. The influence of the fibers on the mechanical properties in fiber-reinforced concrete was analyzed by functional dependence. The selected mechanical properties were compressive strength, splitting tensile strength, bending tensile strength, and fracture energy. The results also include the resulting load–displacement diagrams and summary recommendations for the structural use and design of fiber-reinforced concrete structures. The shear resistance of reinforced concrete beams with hooked fibers was also verified by tests.

2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2020 ◽  
Vol 16 (1) ◽  
pp. 86-106
Author(s):  
Z. Marcalikova ◽  
R. Cajka

AbstractThe paper deals with the determination of mechanical properties of fiber reinforced concrete in dependence on various dosages and recipe of concrete. The mechanical properties were determined for the default recipe of concrete, where the individual variants differ in the amount of fibers. The fibers dosing was 0, 25, 50 and 75 kg/m3. At the highest dosage of 75 kg/m3, the recipe is optimized with regard to the microstructure of the concrete. In the experimental program were determined compressive strength, modulus of elasticity, split tensile strength, flexural tensile strength and load-displacement diagram. The flexural tensile strength was determined based on a three-point and four-point bending test. Based on the evaluated data, the uniaxial tensile strength and the functional dependence for the resultant recipe of concrete with a dosage of 75 kg/m3 is with respect of the increasing importance and application of numerical modelling of building structures, the analysis is performed using non-linear calculation. The aim was to simulate the performed laboratory test and appropriately approximate the specific input parameters of the fiber reinforced concrete for nonlinear analysis.


1985 ◽  
Vol 64 ◽  
Author(s):  
Surendra P. Shah

ABSTRACTDespite its extensive use, low tensile strength has been recognized as one of the major drawbacks of concrete. Although one has learned to avoid exposing concrete structures to adverse static tensile load, these cannot be shielded from short duration dynamic tensile stresses. Such loads originate from sources such as impact from missiles and projectiles, wind gusts, earthquakes and machine vibrations. The need to accurately predict the structural response and reserve capacity under such loading has led to an interest in the mechanical properties of the component materials at high rates of straining.One method to improve the resistance of concrete when subjected to impact and/or impulsive loading is by the incorporation of randomly distributed short fibers. Concrete (or Mortar) so reinforced is termed fiber reinforced concrete (FRC). Moderate increase in tensile strength and significant increases in energy absorption (toughness or impact-resistance) have been reported by several investigators in static tests on concrete reinforced with randomly distributed short steel fibers. A theoretical model to predict fracture toughness of FRC is proposed. This model is based on the concept of nonlinear elastic fracture mechanics.As yet no standard test methods are available to quantify the impact resistance of such composites, although several investigators have employed a variety of tests including drop weight, swinging pendulums and the detonation of explosives. These tests though useful in ascertaining the relative merits of different composites do not yield basic material characteristics which can be used for design.The author has recently developed an instrumented Charpy type of impact test to obtain basic information such as load-deflection relationship, fracture toughness, crack velocity and load-strain history during an impact event. From this information, a damage based constitutive model was proposed. Relative improvements in performance due to the addition of fibers as observed in the instrumented tests are also compared with other conventional methods.


Author(s):  
Natalia Sharma

Abstract: Reinforced concrete structures are frequently in need of repair and strengthening as a result of numerous environmental causes, ageing, or material damage under intense stress conditions, as well as mistakes made during the construction process. RC structures are repaired using a variety of approaches nowadays. The usage of FRC is one of the retrofitting strategies. Steel fiber reinforced concrete (SFRC) was used in this investigation because it contains randomly dispersed short discrete steel fibers that operate as internal reinforcement to improve the cementitious composite's characteristics (concrete). The main rationale for integrating small discrete fibers into a cement matrix is to reduce the amount of cement used. The principal reason for incorporating short discrete fibers into a cement matrix is to reduce cracking in the elastic range, increase the tensile strength and deformation capacity and increase the toughness of the resultant composite. These properties of SFRC primarily depend upon length and volume of Steel fibers used in the concrete mixture. In India, the steel fiber reinforced concrete (SFRC) has seen limited applications in several structures due to the lack of awareness, design guidelines and construction specifications. Therefore, there is a need to develop information on the role of steel fibers in the concrete mixture. The experimental work reported in this study includes the mechanical properties of concrete at different volume fractions of steel fibers. These mechanical properties include compressive strength, split tensile strength and flexural strength and to study the effect of volume fraction and aspect ratio of steel fibers on these mechanical properties. However, main aim of the study was significance of reinforced concrete beams strengthened with fiber reinforced concrete layer and to investigate how these beams deflect under strain. The objective of the investigation was finding that applying FRC to strengthen beams enhanced structural performance in terms of ultimate load carrying capacity, fracture pattern deflection, and mode of failure or not.


2021 ◽  
Vol 11 (17) ◽  
pp. 7926
Author(s):  
Qian Zhang ◽  
Wenqing Zhang ◽  
Yu Fang ◽  
Yongjie Xu ◽  
Xianwen Huang

In order to solve the problem of highly brittle shaft lining under dynamic loading, a combination of hybrid fiber concrete mixed with steel and polypropylene fiber is proposed to make shaft lining. C60, the concrete commonly used in shaft lining, was selected as the reference group. The static mechanical properties, dynamic mechanical properties, and crack failure characteristics of the hybrid fiber concrete were experimentally studied. The test results showed that compared to the reference group concrete, the compressive strength of the hybrid fiber-reinforced concrete did not significantly increase, but the splitting tensile strength increased by 60.4%. The split Hopkinson compression bar results showed that the optimal group peak stress and peak strain of the hybrid fiber concrete increased by 58.2% and 79.2%, respectively, and the dynamic toughness increased by 68.1%. The strain distribution before visible cracks was analyzed by the DIC technology. The results showed that the strain dispersion phenomenon of the fiber-reinforced concrete specimen was stronger than that of the reference group concrete. By comparing the crack failure forms of the specimens, it was found that compared to the reference group concrete, the fiber-reinforced concrete specimens showed the characteristics of continuous and slow ductile failure. The above results suggest that HFRC has significantly high dynamic splitting tensile strength and compressive deformation capacity, as well as a certain anti-disturbance effect. It is an excellent construction material for deep mines under complex working conditions.


2020 ◽  
Vol 32 (2) ◽  
Author(s):  
Sristi Das Gupta ◽  
MD Shahnewaz Aftab ◽  
Hasan Mohammod Zakaria ◽  
Chaity Karmakar

Using natural (Jute) fiber in concrete as a reinforcing material can not only augment the concrete strength but also restrict the use of synthetic fiber which is environmentally detrimental. To achieve this goal, this study evaluated compressive strength, tensile strength and plastic shrinkage of concrete incorporating ‘Natural (Jute)’ fiber of different length (15 mm and 25 mm) with various mix proportions of 0.10%, 0.2%, 0.3% and 0.4% respectively by volume of concrete. Concrete is vulnerable to grow shrinkage cracks because of high evaporation rate in dry and windy conditions. Incorporating of fibers could abate development of this crack. The large length (25 mm) and higher content ( 0.3%) of reinforcing materials (jute fiber) result to the lowering of mechanical properties of JFRC compare to plain concrete. But in the incorporation of short (15 mm) and low fiber content ( 0.3%), enhances the mechanical properties of the same JFRC. Inclusion of 0.3% (15 mm length) fiber gave maximum enhancement of both concrete compressive and tensile strength by 12.4% and 58% respectively compared to the non-fiber reinforced concrete. A drastic suppression of crack occurrence and area of crack between non-fiber reinforced concrete and fiber reinforced concretes was attained. Experimental results of incorporating 0.1–0.4% fiber with 15 mm length in concrete revealed that plastic shrinkage cracks were decreased by 75–99% in contrast to non-fiber reinforced concrete. Therefore, it is concluded that the incorporation of jute fiber in making FRC composite would be one of the favorable methods to enhance the performance of concrete.


Sign in / Sign up

Export Citation Format

Share Document