scholarly journals A Comparative Study on Blast-Resistant Performance of Steel and PVA Fiber-Reinforced Concrete: Experimental and Numerical Analyses

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 707
Author(s):  
Le Chen ◽  
Weiwei Sun ◽  
Bingcheng Chen ◽  
Sen Xu ◽  
Jianguo Liang ◽  
...  

This paper deals with the blast-resistant performance of steel fiber-reinforced concrete (SFRC) and polyvinyl alcohol (PVA) fiber-reinforced concrete (PVA-FRC) panels with a contact detonation test both experimentally and numerically. With 2% fiber volumetric content, SFRC and PVA-FRC specimens were prepared and comparatively tested in comparison with plain concrete (PC). SFRC was found to exhibit better blast-resistant performance than PVA-FRC. The dynamic mechanical responses of FRC panels were numerically studied with Lattice Discrete Particle Model-Fiber (LDPM-F) which was recently developed to simulate the meso-structure of quasi-brittle materials. The effect of dispersed fibers was also introduced in this discrete model as a natural extension. Calibration of LDPM-F model parameters was achieved by fitting the compression and bending responses. A numerical model of FRC contact detonation was then validated against the blast test results in terms of damage modes and crater dimensions. Finally, FRC panels with different fiber volumetric fractions (e.g., 0.5%, 1.0% and 1.5%) under blast loadings were further investigated with the validated LDPM-F blast model. The numerical predictions shed some light on the fiber content effect on the FRC blast resistance performance.

2019 ◽  
Vol 10 (1) ◽  
pp. 241
Author(s):  
Wenjin Yao ◽  
Weiwei Sun ◽  
Ze Shi ◽  
Bingcheng Chen ◽  
Le Chen ◽  
...  

This paper experimentally investigates the blast-resistant characteristics of hybrid fiber-reinforced concrete (HFRC) panels by contact detonation tests. The control specimen of plain concrete, polypropylene (PP), polyvinyl alcohol (PVA) and steel fiber-reinforced concrete were prepared and tested for characterization in contrast with PP-Steel HFRC and PVA-Steel HFRC. The sequent contact detonation tests were conducted with panel damage recorded and measured. Damaged HFRC panels were further comparatively analyzed whereby the blast-resistance performance was quantitively assessed via damage coefficient and blast-resistant coefficient. For both PP-Steel and PVA-Steel HFRC, the best blast-resistant performance was achieved at around 1.5% steel + 0.5% PP-fiber hybrid. Finally, the fiber-hybrid effect index was introduced to evaluate the hybrid effect on the explosion-resistance performance of HFRC panels. It revealed that neither PP-fiber or PVA-fiber provide positive hybrid effect on blast-resistant improvement of HFRC panels.


2014 ◽  
Vol 584-586 ◽  
pp. 1630-1634
Author(s):  
Xin Hua Cai ◽  
Zhen He ◽  
Wen Liu

PVA fiber reinforced cement-based composite is a new high-performance cement-based composite material, which usually manufactured with PVA short fibers (does not exceed 2.5% vol.) and cement-based matrix. It has a significant strain-hardening characteristic and excellent crack controlling ability. Its ultimate tensile strain is up to 3% and crack width is not exceed 100μm. PVA fiber reinforced cement-based composite can be utilized to fabricated high energy absorption opponents, such as protective shield, seismic joint, impact-resistant site, etc. In this paper, the basic mechanical properties of PVA fiber reinforced cement-based composite has been tested and verified first. Then the impact resistance of PVA reinforced cement-based composite has been investigated via drop weight impact test, and compared with ones of plain concrete and steel fiber reinforced concrete with the same strength grade. Through analyzing the test results, it is concluded that PVA reinforced cement-based composite’s impact energy absorption is 48 times than plain concrete, and 9 times than steel fiber reinforced concrete respectively. The impact numbers of PVA reinforced cement-based composite is slightly lower than steel fiber reinforced concrete, but its impact absorption energy after initial cracking is 15 times than steel fiber reinforced concrete. In conclusion, PVA reinforced cement-based composite is an excellent impact material.


2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 445
Author(s):  
José Valdez Aguilar ◽  
César A. Juárez-Alvarado ◽  
José M. Mendoza-Rangel ◽  
Bernardo T. Terán-Torres

Concrete barely possesses tensile strength, and it is susceptible to cracking, which leads to a reduction of its service life. Consequently, it is significant to find a complementary material that helps alleviate these drawbacks. The aim of this research was to determine analytically and experimentally the effect of the addition of the steel fibers on the performance of the post-cracking stage on fiber-reinforced concrete, by studying four notch-to-depth ratios of 0, 0.08, 0.16, and 0.33. This was evaluated through 72 bending tests, using plain concrete (control) and fiber-reinforced concrete with volume fibers of 0.25% and 0.50%. Results showed that the specimens with a notch-to-depth ratio up to 0.33 are capable of attaining a hardening behavior. The study concludes that the increase in the dosage leads to an improvement in the residual performance, even though an increase in the notch-to-depth ratio has also occurred.


2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


1984 ◽  
Vol 21 (3) ◽  
pp. 108-111
Author(s):  
V. S. Sterin ◽  
V. A. Golubenkov ◽  
G. S. Rodov ◽  
B. V. Leikin ◽  
L. G. Kurbatov

Sign in / Sign up

Export Citation Format

Share Document