scholarly journals Electric Double Layer Doping of Charge-Ordered Insulators α-(BEDT-TTF)2I3 and α-(BETS)2I3

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 791
Author(s):  
Yoshitaka Kawasugi ◽  
Hikaru Masuda ◽  
Jiang Pu ◽  
Taishi Takenobu ◽  
Hiroshi M. Yamamoto ◽  
...  

Field-effect transistors based on strongly correlated insulators are an excellent platform for studying the electronic phase transition and simultaneously developing phase transition transistors. Molecular conductors are suitable for phase transition transistors owing to the high tunability of the electronic states. Molecular Mott transistors show field-induced phase transitions including superconducting transitions. However, their application to charge-ordered insulators is limited. In this study, we fabricated electric double layer transistors based on quarter-filled charge-ordered insulators α-(BEDT-TTF)2I3 and α-(BETS)2I3. We observed ambipolar field effects in both compounds where both electron and hole doping (up to the order of 1013 cm−2) reduces the resistance by the band filling shift from the commensurate value. The maximum field-effect mobilities are approximately 10 and 55 cm2/Vs, and the gate-induced conductivities are 0.96 and 3.6 e2/h in α-(BEDT-TTF)2I3 and α-(BETS)2I3, respectively. However, gate-induced metallic conduction does not emerge. The gate voltage dependence of the activation energy in α-(BEDT-TTF)2I3 and the Hall resistance in α-(BETS)2I3 imply that the electric double layer doping in the present experimental setup induces hopping transport rather than band-like two-dimensional transport.

2018 ◽  
Vol 10 (49) ◽  
pp. 43166-43176 ◽  
Author(s):  
Ke Xu ◽  
Md Mahbubul Islam ◽  
David Guzman ◽  
Alan C. Seabaugh ◽  
Alejandro Strachan ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 645 ◽  
Author(s):  
Prasanna D. Patil ◽  
Sujoy Ghosh ◽  
Milinda Wasala ◽  
Sidong Lei ◽  
Robert Vajtai ◽  
...  

Innovations in the design of field-effect transistor (FET) devices will be the key to future application development related to ultrathin and low-power device technologies. In order to boost the current semiconductor device industry, new device architectures based on novel materials and system need to be envisioned. Here we report the fabrication of electric double layer field-effect transistors (EDL-FET) with two-dimensional (2D) layers of copper indium selenide (CuIn7Se11) as the channel material and an ionic liquid electrolyte (1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)) as the gate terminal. We found one order of magnitude improvement in the on-off ratio, a five- to six-times increase in the field-effect mobility, and two orders of magnitude in the improvement in the subthreshold swing for ionic liquid gated devices as compared to silicon dioxide (SiO2) back gates. We also show that the performance of EDL-FETs can be enhanced by operating them under dual (top and back) gate conditions. Our investigations suggest that the performance of CuIn7Se11 FETs can be significantly improved when BMIM-PF6 is used as a top gate material (in both single and dual gate geometry) instead of the conventional dielectric layer of the SiO2 gate. These investigations show the potential of 2D material-based EDL-FETs in developing active components of future electronics needed for low-power applications.


2019 ◽  
Author(s):  
Domenic Prete ◽  
Johanna Lieb ◽  
Valeria Demontis ◽  
Luca Bellucci ◽  
Valentina Tozzini ◽  
...  

2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Rabaya Basori

<p class="BodyText1"><span lang="EN-IN">We report that photoresponse of </span><span lang="EN-US">a single metal-organic charge transfer complex Cu:TCNQ nanowire (NW)</span><span lang="EN-IN"> can be enhanced simultaneously by illumination as well as applying a gate bias in an Electric Double Layer Field Effect Transistor (EDL-FET) configuration fabricated on </span><span lang="EN-US">Cu:TCNQ </span><span lang="EN-IN">as a channel.</span><span lang="EN-IN">It is observed that applying a bias using an EDL gate to a n-channel Cu:TCNQ single NW FET, one can enhance the photoresponse of the Cu:TCNQ substantially over that which arise from the photoconductive response alone. </span><span lang="EN-US">Electron-hole pairs that generate in the NW under illuminated of wavelength 400nm gives rise photo current. Also, electric double layer induce negative charges in the NW channel which effectively increases the carrier concentration, contributing to better response in conduction. </span><span lang="EN-IN">The effect reported here has a generic nature that gives rise to a class of gated photodetectors of different photoresponsive materials.</span></p>


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3425 ◽  
Author(s):  
Ning Liu ◽  
Ru Chen ◽  
Qing Wan

As promising biochemical sensors, ion-sensitive field-effect transistors (ISFETs) are used widely in the growing field of biochemical sensing applications. Recently, a new type of field-effect transistor gated by ionic electrolytes has attracted intense attention due to the extremely strong electric-double-layer (EDL) gating effect. In such devices, the carrier density of the semiconductor channel can be effectively modulated by an ion-induced EDL capacitance at the semiconductor/electrolyte interface. With advantages of large specific capacitance, low operating voltage and sensitive interfacial properties, various EDL-based transistor (EDLT) devices have been developed for ultrasensitive portable sensing applications. In this article, we will review the recent progress of EDLT-based biochemical sensors. Starting with a brief introduction of the concepts of EDL capacitance and EDLT, we describe the material compositions and the working principle of EDLT devices. Moreover, the biochemical sensing performances of several important EDLTs are discussed in detail, including organic-based EDLTs, oxide-based EDLTs, nanomaterial-based EDLTs and neuromorphic EDLTs. Finally, the main challenges and development prospects of EDLT-based biochemical sensors are listed.


2013 ◽  
Vol 1549 ◽  
pp. 73-78
Author(s):  
Jianting Ye ◽  
Yijin Zhang ◽  
Yoshihiro Iwasa

ABSTRACTMaking field effect transistors (FETs) on thin flake of single crystal isolated from layered materials was pioneered by the success of graphene. To overcome the difficulties of the zero band gap in graphene electronics, we report the fabrication of an electric double layer (EDL) transistor, a variant of FET, based on another layered material, MoS2. Using strong carrier tunability found in EDL coupled by ion movement, MoS2 transistor displayed an unambiguously ambipolar operation in addition to its commonly observed n-type transport. A high on/off ratio >104, large “ON” state conductivity of ∼mS, and a high reachable n2D ∼ 1×1014 cm-2 confirmed the high performance transistor operation being important for application. The high-density carriers of both holes and electrons can drive the MoS2 channel to metallic states indicating that new electronic phases could be accessed using the protocol established in making EDL gated transistors on layered materials.


2011 ◽  
Vol 1288 ◽  
Author(s):  
J. T. Ye ◽  
M. F. Craciun ◽  
M. Koshino ◽  
S. Russo ◽  
Y. Kasahara ◽  
...  

ABSTRACTWe present a study on the liquid/solid interface, which can be electrostatically doped to a high carrier density (n~1014 cm-2) by electric-double-layer gating. Using micro-cleavage technique on the layered materials: ZrNCl and graphene, atomically flat channel surfaces can be easily prepared. Intrinsic high carrier density transport regime is accessed at the channel interface of electric double-layer field effect transistor, where novel transport properties are unveiled as the field-induced superconductivity on the ZrNCl with high transition temperature at 15 K, and accessing a high carrier density up to 2×1014 cm-2 in graphene and its multi-layers.


Sign in / Sign up

Export Citation Format

Share Document