scholarly journals Systematic Comparison on Convective Heat Transfer Characteristics of Several Pin Fins for Turbine Cooling

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 977
Author(s):  
Jin Xu ◽  
Ke Zhang ◽  
Jingtian Duan ◽  
Jiang Lei ◽  
Junmei Wu

This paper is focused on the heat transfer augment ability and friction factor of different cross-section pin fins. An experimental study is conducted in a wide rectangular channel. The steady-state thermochromic liquid crystals (TLC) method is applied to measure the tested surface temperature. Nine sets of pin fins are employed in the experiment. The nominal diameter of all pin fins is the same value. Nine sets of pin fins have three roundness shapes (Circle, Ellipse and Oblong), three streamline shapes (Dropform, NACA and Lancet) and three quadrangle shapes (Diamond, Diamond-s and Square), respectively. The arrangement parameters of all nine shapes are kept the same. As they have the same nominal diameter and arrangement, the channel blockage ratio is the same for each pin fin set. Reynolds numbers range from 10,000 to 60,000. The pressure losses of pin fin arrays are measured to obtain friction factor. Meanwhile, the overall thermal performances of all nine sets are also considered and compared. The results show heat transfer enhancement abilities of quadrangle shape pin fins are relatively higher than the roundness and streamline shapes. Diamond-s pin fins present the largest averaged Nusselt number and overall thermal performance on the endwall for all the nine pin fins under different Re. Concerning overall thermal performance, the traditional Circle pin fin is the second best. The pressure loss of streamline shape pin fins is the lowest in these three shape types. Moreover, the characteristic of local heat transfer distribution varies substantially for different pin shapes at low Re.

Author(s):  
Jin Xu ◽  
Jiaxu Yao ◽  
Pengfei Su ◽  
Jiang Lei ◽  
Junmei Wu ◽  
...  

Convective heat transfer enhancement and pressure loss characteristics in a wide rectangular channel (AR = 4) with staggered pin fin arrays are investigated experimentally. Six sets of pin fins with the same nominal diameter (Dn = 8mm) are tested, including: Circular, Elliptic, Oblong, Dropform, NACA and Lancet. The relative spanwise pitch (S/Dn = 2) and streamwise pitch (X/Dn = 4.5) are kept the same for all six sets. Same nominal diameter and arrangement guarantee the same blockage area in the channel for each set. Reynolds number based on channel hydraulic diameter is from 10000 to 70000 with an increment of 10000. Using thermochromic liquid crystal (R40C20W), heat transfer coefficients on bottom surface of the channel are achieved. The obtained friction factor, Nusselt number and overall thermal performance are compared with the previously published data from other groups. The averaged Nusselt number of Circular pin fins is the largest in these six pin fins under different Re. Though Elliptic has a moderate level of Nusselt number, its pressure loss is next to the lowest. Elliptic pin fins have pretty good overall thermal performance in the tested Reynolds number range. When Re>40000, Lancet has a same level of performance as Circular, but its pressure loss is much lower than Circular. These two types are both promising alternative configuration to Circular pin fin used in gas turbine blade.


Author(s):  
S. Huang ◽  
Y. Y. Yan ◽  
J. D. Maltson ◽  
E. Utriainen

Experiments have been conducted to investigate the overall thermal performance of a rectangular channel implemented with an elongated pedestal array. The staggered pedestals were elongated in the spanwise direction in order that the jet flow from between the pedestals impinges at the centre of the pedestals in the downstream row. The average heat transfer coefficient of the pedestal and the local heat transfer coefficient distribution of the bottom channel wall were investigated for different geometrical arrangements. The pressure drop across the pedestal bank was measured. The transient liquid crystal method was used to obtain the local heat transfer coefficient distribution on the bottom channel wall and the lumped capacitance method was used to measure the average heat transfer coefficient of the pedestals in the last two rows of the bank. Five pressure taps were arranged on the centerline of each gap between two pedestal rows to measure the pressure drop. The heat transfer coefficients were measured over the Reynolds number range from 10,000 to 30,000. The minimum flow area to the channel cross-section flow area ratio ranged from 0.149 to 0.333. The effects of pedestal geometry and array distribution were investigated in detail showing the relationship between the pedestal array geometry, heat transfer enhancement and pressure drop. Conclusions were drawn on the effects of geometry and flow conditions on overall thermal performance of the respective channels.


2013 ◽  
Vol 448-453 ◽  
pp. 3291-3295
Author(s):  
Ge Ping Wu ◽  
Jun Wang ◽  
Ping Lu

Flow and heat transfer characteristics in the microchannel cooling passages with three different types of the MTPV systems are numerically investigated. Reynolds ranged from 100 to 1000 and hydraulic diameter from 0.4mm to 0.8mm. The steady, laminar flow and heat transfer equations are solved in a finite-volume method. The local heat transfer characteristics, thermal resistance, Nusselt numbers, friction factor and pressure losses of the different types are analyzed. A comparison of the heat transfer coefficient, pressure losses and friction factor of the different microchannels are also presented. The heat transfer performance of the rob bundles microchannel is found to be much better than others. However, the rectangular passage has the lowest thermal resistance than the other types of microchannels.


Author(s):  
Sin Chien Siw ◽  
Austen D. Fradeneck ◽  
Minking K. Chyu ◽  
Mary Anne Alvin

This paper describes a detailed experimental investigation of a narrow rectangular channel based on the double-wall cooling concept that can be applicable to a gas turbine airfoil. The channel has dimensions of 63.5 mm by 12.7 mm, corresponding to an aspect ratio of 5:1. The pin diameter, D, is 12.7 mm, and the ratio of pin-height-to-diameter, H/D is 1. The inter-pin spacing is varies in both spanwise and streamwise directions to form two inline, and two staggered pin-fin configurations. The Reynolds number, based on the hydraulic diameter of the pin fin and the mean bulk velocity, ranges from 6,000 to 15,000. The experiments employ a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. The heat transfer on both the endwall and pin-fin surfaces revealed similar pattern compared to the typical circular pin-fin array, which were conducted at higher Reynolds number. The total heat transfer enhancement of current pin-fin array is approximately four times higher than that of fully developed smooth channel with low pressure loss, which resulted in much higher thermal performance compared to other pin-fin array as reported in the literature.


Author(s):  
Se´bastien Kunstmann ◽  
Jens von Wolfersdorf ◽  
Uwe Ruedel

An investigation was conducted to assess the thermal performance of 90° ribs, low and high W-shaped ribs, and combinations of low W-shaped ribs with high W-shaped ribs and with dimples in a rectangular channel with an aspect ratio (W/H) of 2:1. The blockage ratios (e/Dh) were 0.02 with the 90° ribs and the low W-shaped ribs and 0.06 with high W-shaped ribs. The rib pitch-to-height ratio (P/e) were 10 and 20. The channel height-to-dimple diameter (H/D) was 16.67; the dimple depth-to-dimple diameter (δ/D) was 0.3. The ribs and the dimples were located on one channel wall (side W). Furthermore, W-shaped ribs and 90° ribs with e/Dh = 0.027 and P/e = 10 were also individually investigated in a test channel with 1/4 of its cross section blocked. The Reynolds numbers investigated (Re > 100k) are typical for combustor liner cooling configurations in gas turbines. Local heat transfer coefficients using the transient thermochromic liquid crystal technique and overall pressure losses were measured. The different configurations were investigated numerically to visualize the flow pattern in the channel and to support the understanding of the experimental data. The results show that the highest heat transfer enhancement rates are obtained by a combination of W-shaped ribs with P/e = 10 and e/Dh = 0.06 and W-shaped ribs with P/e = 10 and e/Dh = 0.02. The best thermal performance is achieved by regularly spaced lower W-shaped ribs and by a compound roughness of regularly spaced W-shaped ribs and dimples at Re below and above 300,000, respectively.


Author(s):  
M. K. Chyu ◽  
E. O. Oluyede ◽  
H.-K. Moon

Casting of pin fins at the trailing edge of the turbine blades often presents some difficulties due to tight dimensional tolerances, leaving the pin fins inclined after the casting process. This study is to experimentally examine the effects of such an imperfect manufacturing phenomena on the heat transfer and friction characteristics over pin-fin arrays with different pin inclinations. The test model is a staggered short (H/D = 1) pin-fin array with an inter-pin spacing of 2.5 times the pin-diameter (S/D = 2.5) in both longitudinal and transverse directions. Detailed local heat transfer coefficients on both array endwalls and pin elements are determined using the transient liquid crystal technique, as the inclined angle θ varies from 40° to 90° and the Reynolds number ranges from 7.0 × 103 and 1.3 × 104. The measured data suggest that an increase in pin inclined angle relative to its normal orientation (90-degree) significantly reduces the level of heat transfer enhancement from the array. Such a reduction amounts to nearly 50% for the 40-degree case. The accompanied friction loss also decreases.


Author(s):  
Lei Luo ◽  
Han Yan ◽  
Wei Du ◽  
Songtao Wang ◽  
Changhai Li ◽  
...  

Abstract In this study, numerical simulations are conducted to investigate the effects of pin fin and dimple shape on the flow structure and heat transfer characteristics in a rectangular channel. The studied shapes for dimple and pin fin are circular, spanwise-elliptical, and streamwise-elliptical, respectively. The flow structure, friction factor, and heat transfer performance are obtained and analyzed with Reynolds number ranging from 10,000 to 50,000. Channel with circular pin fin and dimple is chosen as the Baseline. Channels with spanwise-elliptical pin fins have the best heat transfer augmentation, while also accompanied with the largest friction factor. Spanwise-elliptical pin fin generates the strongest horseshoe vortex which is responsible for the best heat transfer augmentation. Besides, channels with streamwise-elliptical pin fins show the worst heat transfer augmentation and the smallest friction factors. Dimple plays an important role in improving the heat transfer. Spanwise-elliptical dimple yields the best heat transfer augmentation which is attributed to the strongest counter-rotating vortex, while streamwise-elliptical dimple shows the worst heat transfer enhancement.


Author(s):  
Jared M. Pent ◽  
Jay S. Kapat ◽  
Mark Ricklick

This paper examines the local and averaged endwall heat transfer effects of a staggered array of porous aluminum pin fins with a channel blockage ratio (blocked channel area divided by open channel area) of 50%. Two sets of pins were used with pore densities of 0 (solid) and 10 pores per inch (PPI). The pressure drop through the channel was also determined for several flow rates using each set of pins. Local heat transfer coefficients on the endwall were measured using Thermochromatic Liquid Crystal (TLC) sheets recorded with a charge-coupled device (CCD) camera. Static and total pressure measurements were taken at the entrance and exit of the test section to determine the overall pressure drop through the channel and explain the heat transfer trends through the channel. The heat transfer and pressure data was then compared to flow visualization tests that were run using a fog generator. Results are presented for the two sets of pins with Reynolds numbers between 25000 and 130000. Local HTC (heat transfer coefficient) profiles as well as spanwise and streamwise averaged HTC plots are displayed for both pin arrays. The thermal performance was calculated for each pin set and Reynolds number. All experiments were carried out in a channel with an X/D of 1.72, a Y/D of 2.0, and a Z/D of 1.72.


Sign in / Sign up

Export Citation Format

Share Document