scholarly journals Influences of Chemical Functionalities on Crystal Structures and Electrochemical Properties of Dihydro-benzoxazine Dimer Derivatives

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 979
Author(s):  
Natapol Suetrong ◽  
Kantapat Chansaenpak ◽  
Sarawoot Impeng ◽  
Piyanut Pinyou ◽  
Vincent Blay ◽  
...  

Dihydro-1,3,2H-benzoxazine dimer derivatives or dihydro-benzoxazine dimers are a class of compounds typically prepared by ring-opening reactions between dihydro-benzoxazines and phenols. Dihydro-benzoxazine dimers act as chelating agents for several transition and rare-earth cations. To better understand the chelating properties, it is necessary to examine their structural features and electrochemical characteristics thoroughly. However, the electrochemical properties of dihydro-benzoxazine dimers have not been tremendously examined. Herein, eight derivatives of dihydro-benzoxazine dimers possessing different substituents on the benzene ring and the tertiary-amine nitrogen were synthesized as model compounds to investigate their influences on crystal structures and electrochemical properties. The crystal structure of the dihydro-benzoxazine dimer, namely 2,2’-(cyclohexylazanediyl)bis(methylene)bis(4-methoxyphenol) (7), is identified for the first time and further used to compare with the crystal structures of other derivatives reported previously. For all the derivatives, intermolecular O–H···O hydrogen bonds are the significant interactions to hold the crystal packing of (7) and also the other derivatives. Hirshfeld surface analyses confirm the presence of intermolecular O–H···O hydrogen bonds. Redox behavior of the eight dihydro-benzoxazine dimers was studied by cyclic voltammetry. An oxidation peak observed at 0.25–0.47 V corresponds to the oxidation of the phenolic –OH group to the phenoxonium intermediate. The shift in the electrochemical peak positions is due to the different abilities of the substituents to stabilize the phenoxonium cation intermediate. The stabilizing power is ranged in the following order: methoxy > dimethyl > ethyl ≈ methyl, and N-cyclohexyl > N-methyl. Thus, the derivative (7), which contains both the methoxy and N-cyclohexyl groups, has the lowest oxidation potential. Our work elucidates the effect of the substituents on the crystal structures and electrochemical properties of the dihydro-benzoxazine dimers.

Author(s):  
Scott A. Steiger ◽  
Chun Li ◽  
Christina Gates ◽  
Nicholas R. Natale

The title compound I, 2,2′-[(2-nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone), C23H27NO6, features a 1,3-ketone–enol conformation which is stabilized by two intramolecular hydrogen bonds. The most prominent intermolecular interactions in compound I are C—H...O hydrogen bonds, which link molecules into a two-dimensional network parallel to the (001) plane and a chain perpendicular to (1\overline{1}1). Both title compounds II, ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C23H29NO6, and III, ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C29H29NO3, share the same structural features, such as a shallow boat conformation of the dihydropyridine group and an orthogonal aryl group attached to the dihydropyridine. Intermolecular N—H...O bonding is present in the crystal packing of both compound II and III.


2013 ◽  
Vol 69 (12) ◽  
pp. 1549-1552 ◽  
Author(s):  
Vladimir V. Chernyshev ◽  
Sergey Y. Efimov ◽  
Ksenia A. Paseshnichenko ◽  
Andrey A. Shiryaev

The title salt, C8H12NO+·C7H10NO5−, crystallizes in two polymorphic modifications,viz.monoclinic (M) and orthorhombic (O). The crystal structures of both polymorphic modifications have been established from laboratory powder diffraction data. The crystal packing motifs in the two polymorphs are different, but the conformations of the anions are generally similar. InM, the anions are linked by pairs of hydrogen bonds of the N—H...O and O—H...O types into chains along theb-axis direction, and neighbouring molecules within the chain are related by the 21screw axis. The cations link these chainsviaO—H...O and N—H...O hydrogen bonds into layers parallel to (001). InO, the anions are linked by O—H...O hydrogen bonds into helices along [001], and neighbouring molecules within the helix are related by the 21screw axis. The neighbouring helical turns are linked by N—H...O hydrogen bonds. The cations link the helicesviaO—H...O and N—H...O hydrogen bonds, thus forming a three-dimensional network.


2018 ◽  
Vol 74 (8) ◽  
pp. 1111-1116 ◽  
Author(s):  
Shet M. Prakash ◽  
S. Naveen ◽  
N. K. Lokanath ◽  
P. A. Suchetan ◽  
Ismail Warad

2-Aminopyridine and citric acid mixed in 1:1 and 3:1 ratios in ethanol yielded crystals of two 2-aminopyridinium citrate salts, viz. C5H7N2 +·C6H7O7 − (I) (systematic name: 2-aminopyridin-1-ium 3-carboxy-2-carboxymethyl-2-hydroxypropanoate), and 3C5H7N2 +·C6H5O7 3− (II) [systematic name: tris(2-aminopyridin-1-ium) 2-hydroxypropane-1,2,3-tricarboxylate]. The supramolecular synthons present are analysed and their effect upon the crystal packing is presented in the context of crystal engineering. Salt I is formed by the protonation of the pyridine N atom and deprotonation of the central carboxylic group of citric acid, while in II all three carboxylic groups of the acid are deprotonated and the charges are compensated for by three 2-aminopyridinium cations. In both structures, a complex supramolecular three-dimensional architecture is formed. In I, the supramolecular aggregation results from Namino—H...Oacid, Oacid...H—Oacid, Oalcohol—H...Oacid, Namino—H...Oalcohol, Npy—H...Oalcohol and Car—H...Oacid interactions. The molecular conformation of the citrate ion (CA3−) in II is stabilized by an intramolecular Oalcohol—H...Oacid hydrogen bond that encloses an S(6) ring motif. The complex three-dimensional structure of II features Namino—H...Oacid, Npy—H...Oacid and several Car—H...Oacid hydrogen bonds. In the crystal of I, the common charge-assisted 2-aminopyridinium–carboxylate heterosynthon exhibited in many 2-aminopyridinium carboxylates is not observed, instead chains of N—H...O hydrogen bonds and hetero O—H...O dimers are formed. In the crystal of II, the 2-aminopyridinium–carboxylate heterosynthon is sustained, while hetero O—H...O dimers are not observed. The crystal structures of both salts display a variety of hydrogen bonds as almost all of the hydrogen-bond donors and acceptors present are involved in hydrogen bonding.


2015 ◽  
Vol 11 ◽  
pp. 860-868 ◽  
Author(s):  
Vladimir A Azov ◽  
Diana Janott ◽  
Dirk Schlüter ◽  
Matthias Zeller

An Ullmann-type coupling reaction was employed for the preparation of several N-arylated monopyrrolotetrathiafulvalenes with variable substitution patterns. Spectroscopic and electrochemical properties of the coupling products strongly depend on the electronic nature of the aromatic substituents due to their direct conjugation with the tetrathiafulvalene chromophore. The crystal packing of the arylated monopyrrolotetrathiafulvalenes is primarily defined by networks of C–H···X weak hydrogen bonds and short S···S contacts involving the tetrathiafulvalene moieties.


Author(s):  
K. Rajkumar ◽  
S. Sivakumar ◽  
R. Arulraj ◽  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
...  

The syntheses and crystal structures of 3-(2-chloroethyl)-r-2,c-6-diphenylpiperidin-4-one, C19H20ClNO, (I), and 3-(2-chloroethyl)-r-2,c-6-bis(4-fluorophenyl)piperidin-4-one, C19H18ClF2NO, (II), are described. The piperidone ring adopts a chair conformation in (I), whereas a slightly distorted chair conformation is formed in (II). The dihedral angle between the mean plane of the phenyl rings is 59.1 (1)° in (I) and 76.1 (1)° in (II). The crystal packing features weak intermolecular N—H...O hydrogen bonds in each structure.


2015 ◽  
Vol 71 (1) ◽  
pp. 75-79 ◽  
Author(s):  
Quoc Cuong Ton ◽  
Ernst Egert

The antibiotic trimethoprim [5-(3,4,5-trimethoxybenzyl)pyrimidine-2,4-diamine] was cocrystallized with glutarimide (piperidine-2,6-dione) and its 3,3-dimethyl derivative (4,4-dimethylpiperidine-2,6-dione). The cocrystals,viz.trimethoprim–glutarimide (1/1), C14H18N4O3·C5H7NO2, (I), and trimethoprim–3,3-dimethylglutarimide (1/1), C14H18N4O3·C7H11NO2, (II), are held together by three neighbouring hydrogen bonds (one central N—H...N and two N—H...O) between the pyrimidine ring of trimethoprim and the imide group of glutarimide, with anADA/DADpattern (A= acceptor andD= donor). These heterodimers resemble two known cocrystals of trimethoprim with barbituric acid and its 5,5-diethyl derivative. Trimethoprim shows a conformation in which the planes of the pyrimidine and benzene rings are approximately perpendicular to one another. In its glutarimide coformer, five of the six ring atoms lie in a common plane; the C atom opposite the N atom deviates by about 0.6 Å. The crystal packing of each of the two cocrystals is characterized by an extended network of hydrogen bonds and contains centrosymmetrically related trimethoprim homodimers formed by a pair of N—H...N hydrogen bonds. This structural motif occurs in five of the nine published crystal structures in which neutral trimethoprim is present.


2020 ◽  
Vol 76 (8) ◽  
pp. 716-722
Author(s):  
Lukas Tapmeyer ◽  
Steven Hill ◽  
Michael Bolte ◽  
Wilhelm Maximilian Hützler

We report herein the crystal structures of a monohydrate of Colour Index Pigment Red 48 (P.R.48) (systematic name: monosodium 2-{2-[3-carboxy-2-oxo-1,2-dihydronaphthalen-1-ylidene]hydrazin-1-yl}-4-chloro-5-methylbenzenesulfonate monohydrate), Na+·C18H12ClO6S−·H2O, and a dihydrate, Na+·C18H12ClO6S−·2H2O. The two monosodium salt hydrates of P.R.48 were obtained from in-house synthesized P.R.48. Both have monoclinic (P21/c) symmetry at 173 K. The crystal packing of both crystal structures shows a layer arrangement whereby N—H...O and O—H...O hydrogen bonds are formed.


2000 ◽  
Vol 55 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Teresa Borowiak ◽  
Irena Wolska ◽  
Artur Korzański ◽  
Wolfgang Milius ◽  
Wolfgang Schnick ◽  
...  

The crystal structures of two compounds containing enaminone heterodiene systems and forming intermolecular hydrogen bonds N-H·O are reported: 1) 3-ethoxycarbonyl-2-methyl-4-pyridone (hereafter ETPY) and 2) 3-ethoxycarbonyl-2-phenyl-6-methoxycarbonyl-5,6-di-hydro-4-pyridone (hereafter EPPY). The crystal packing is controlled by intermolecular hydro­ gen bonds N-H·O = C connecting the heteroconjugated enaminone groups in infinite chains. In ETPY crystals the intermolecular hydrogen bond involves the heterodienic pathway with the highest π-delocalization that is effective for a very short N·O distance of 2.701(9) Å (average from two molecules in the asymmetric unit). Probably due to the steric hindrance, the hydrogen bond in EPPY is formed following the heterodienic pathway that involves the ester C = O group, although π-delocalization along this pathway is less than that along the pyridone-part pathway resulting in a longer N·O distance of 2.886(3) Å


2021 ◽  
Vol 77 (4) ◽  
pp. 186-196
Author(s):  
Negin Lal Zakaria ◽  
Mehrdad Pourayoubi ◽  
Mahsa Eghbali Toularoud ◽  
Michal Dušek ◽  
Eliska Skorepova

The crystal structures of two single-enantiomer amidophosphoesters with an (O)2P(O)(N) skeleton and one single-enantiomer phosphoric triamide with an (N)2P(O)(N) skeleton were studied. The compounds are diphenyl [(R)-(+)-α-4-dimethylbenzylamido]phosphate, (I), and diphenyl [(S)-(−)-α-4-dimethylbenzylamido]phosphate, (II), both C21H22NO3P, and N-(2,6-difluorobenzoyl)-N′,N′′-bis[(R)-(+)-α-ethylbenzyl]phosphoric triamide, C25H28F2N3O2P, (III). The asymmetric units contain two amidophosphoester molecules for (I) and (II), and one phosphoric triamide molecule for (III). In the crystal structures of (I) and (II), molecules are assembled in a similar one-dimensional chiral ribbon architecture, but with almost a mirror-image relationship with respect to each other through N—H...O(P) and C—H...O(P) hydrogen bonds along [010]. In the crystal structure of (III), the chiral tape architecture along [100] is mediated by N—H...O(P) and N—H...O(C) hydrogen bonds, and the tapes are connected into slabs by C—H...O interactions (along the ab plane). The differences/similarities of the two diastereotopic phenoxy groups in (I)/(II) and the two chiral amine fragments in (III) were studied on the grounds of geometry, conformation and contribution to the crystal packing, as well as 1H and 13C signals in a solution NMR study.


2006 ◽  
Vol 4 (3) ◽  
pp. 458-475 ◽  
Author(s):  
Yurii Chumakov ◽  
Yurii Simonov ◽  
Mata Grozav ◽  
Manuela Crisan ◽  
Gabriele Bocelli ◽  
...  

AbstractThe crystal structures of six novel salts of 4-nitrobenzoic acid — namely, 2-hydroxyethylammonium 4-nitrobenzoate (I), 2-hydroxypropylammonium 4-nitrobenzoate (II), 1-(hydroxymethyl)propylammonium 4-nitrobenzoate (III), 3-hydroxypropylammonium 4-nitrobenzoate (IV), bis-(2-hydroxyethylammonium) 4-nitrobenzoate (V), morpholinium 4-nitrobenzoate (VI) — containing the same anion but different cations have been studied. The ionic forms of I-VI serve as building blocks of the supramolecular architecture, and in crystals they are held together via ionic N-H···O and O-H···O hydrogen bonds. In the crystal packing the building blocks of I-III are self-assembled via N-H...O, O-H···O and C-H...O hydrogen bonds to form the chains which are further consolidated into two-dimensional layers by the same type of interactions. In IV-VI the chain-like structures have been generated by building blocks.


Sign in / Sign up

Export Citation Format

Share Document