scholarly journals Fabrication of Metal (Cu and Cr) Incorporated Nickel Oxide Films for Electrochemical Oxidation of Methanol

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1398
Author(s):  
Rimsha Liaqat ◽  
Muhammad Adil Mansoor ◽  
Javed Iqbal ◽  
Asim Jilani ◽  
Sehar Shakir ◽  
...  

Methanol electrochemical oxidation in a direct methanol fuel cell (DMFC) is considered to be an efficient pathway for generating renewable energy with low pollutant emissions. NiO−CuO and Ni0.95Cr0.05O2+δ thin films were synthesized using a simple dip-coating method and tested for the electro-oxidation of methanol. These synthesized electrocatalysts were characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. Different electrochemical techniques were used to investigate the catalytic activity of these prepared electrocatalysts for methanol oxidation, including linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA). In the presence of 0.3 M methanol, the current densities of NiO−CuO and Ni0.95Cr0.05O2+δ thin films were found to be 12.2 mA·cm−2 and 6.5 mA·cm−2, respectively. The enhanced catalytic activity of NiO−CuO and Ni0.95Cr0.05O2+δ thin films may be a result of the synergistic effect between different metal oxides. The Chronoamperometry (CA) results of the mixed metal oxide thin films confirmed their stability in basic media. Furthermore, the findings of electrochemical impedance spectroscopy (EIS) of mixed metal oxide thin films demonstrated a lower charge transfer resistance as compared to the pure NiO, CuO, and Cr2O3 thin films.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4702
Author(s):  
Roberto Spotorno ◽  
Marlena Ostrowska ◽  
Simona Delsante ◽  
Ulf Dahlmann ◽  
Paolo Piccardo

A commercially available glass-ceramic composition is applied on a ferritic stainless steel (FSS) substrate reproducing a type of interface present in solid oxide fuel cells (SOFCs) stacks. Electrochemical impedance spectroscopy (EIS) is used to study the electrical response of the assembly in the temperature range of 380–780 °C and during aging for 250 h at 780 °C. Post-experiment analyses, performed by means of X-ray diffraction (XRD), and along cross-sections by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, highlight the microstructural changes promoted by aging conditions over time. In particular, progressive crystallization of the glass-ceramic, high temperature corrosion of the substrate and diffusion of Fe and Cr ions from the FSS substrate into the sealant influence the electrical response of the system under investigation. The electrical measurements show an increase in conductivity to 5 × 10−6 S∙cm−1, more than one order of magnitude below the maximum recommended value.


Sign in / Sign up

Export Citation Format

Share Document