scholarly journals Controlling the Spatial Direction of Hydrothermally Grown Rutile TiO2 Nanocrystals by the Orientation of Seed Crystals

Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 64 ◽  
Author(s):  
Julian Kalb ◽  
James Dorman ◽  
Stephan Siroky ◽  
Lukas Schmidt-Mende

Hydrothermally grown TiO2 nanorods are a key material for several electronic applications. Due to its anisotropic crystal structure, the electronic properties of this semiconductor depend on the crystallographic direction. Consequently, it is important to control the crystal orientation to optimize charge carrier pathways. So far, the growth on common polycrystalline films such as fluorine tin oxide (FTO) results in randomly distributed growth directions. In this paper, we demonstrate the ability to control the growth direction of rutile TiO2 nanocrystals via the orientation of the seed crystals. The control of the orientation of such nanocrystals is an important tool to adjust the electronic, mechanical, and chemical properties of nanocrystalline films. We show that each employed macroscopic seed crystal provides the growth of parallel nanofingers along the [001] direction under specific angles. The parallel growth of these nanofingers leads to mesocrystalline films whose thickness and surface structure depends on the crystal orientation of the seed crystal. In particular, the structure of the films is closely linked with the known inner structure of hydrothermally grown rutile TiO2 nanorods on FTO. Additionally, comprehensive 1D structures on macroscopic single-crystals are generated by branching processes. These branched nanocrystals form expanded 2D defect planes, which provide the opportunity of defect doping-induced two-dimensional electronic systems (2DES).

2014 ◽  
Vol 1693 ◽  
Author(s):  
Ouloide Yannick Goue ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
Andrew J. Trunek ◽  
Philip G. Neudeck ◽  
...  

ABSTRACTThe performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC a/m-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 μm (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as-grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults (SFs). Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions. Contrast extinction analysis of these dislocation lines reveals they are edge type basal plane dislocations that track the growth direction. Polytype phase transition and stacking faults were observed by high-resolution TEM (HRTEM), in agreement with SWBXT and Raman scattering.


2011 ◽  
Vol 1350 ◽  
Author(s):  
Tomohiro Shimizu ◽  
Qi Wang ◽  
Chonge Wang ◽  
Fumihiro Inoue ◽  
Makoto Koto ◽  
...  

ABSTRACTControl of crystal orientation of vertically grown epitaxial Si (111) and (110) nanowire arrays on Si substrate has been demonstrated using a combination of an anodic aluminum oxide (AAO) template and vapor – liquid – solid (VLS) growth method. The crystal orientation of the nanowire was investigated by transmission electron microscopy. A growth direction of the nanowire arrays was guided perpendicular to the surface of the substrate by the AAO template, and the crystal orientation of the nanowire arrays was selected using the single crystal Si substrate properly cut in desired orientation.


2009 ◽  
Vol 113 (32) ◽  
pp. 14567-14574 ◽  
Author(s):  
M. Vijayakumar ◽  
Sebastien Kerisit ◽  
Chongmin Wang ◽  
Zimin Nie ◽  
Kevin M. Rosso ◽  
...  

2014 ◽  
Vol 70 (2) ◽  
Author(s):  
Mohamad Azuwa Mohamed ◽  
Wan Norharyati Wan Salleh ◽  
Juhana Jaafar ◽  
Norhaniza Yusof

The evolution of desirable physico-chemical properties in high performance photocatalyst materials involves steps that must be carefully designed, controlled, and optimized. This study investigated the role of key parameter in the preparation and photocatalytic activity analysis of the mixed phase of anatase/rutile TiO2 nanoparticles, prepared via sol-gel method containing titanium-n-butoxide Ti(OBu)4 as a precursor material, nitric acid as catalyst, and isopropanol as solvent. The prepared TiO2 nanoparticles were characterized by means of XRD, SEM, and BET analyses, and UV-Vis-NIR spectroscopy. The results indicated that the calcination temperature play an important role in the physico-chemical properties and photocatalytic activity of the resulting TiO2 nanoparticles. Different calcination temperatures would result in different composition of anatase and rutile. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO2 nanoparticles was measured by photodegradation of 50 ppm phenol in an aqueous solution. The commercial anatase from Sigma-Aldrich and Degussa P25 were used for comparison purpose. The mixed phase of anatase/rutile TiO2 nanoparticles (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400°C exhibited the highest photocatalytic activity of 84.88% degradation of phenol. The result was comparable with photocatalytic activity demonstrated by Degussa P25 by 1.54% difference in phenol degradation. The results also suggested that the mixed phase of anatase/rutile TiO2 nanoparticles is a promising candidate for the phenol degradation process. The high performance of photocatalyst materials may be obtained by adopting a judicious combination of anatase/rutile and optimized calcination conditions.


2013 ◽  
Vol 59 ◽  
pp. 187-195 ◽  
Author(s):  
Dong-Sheng Li ◽  
Jian-Biao Chen ◽  
Cheng-Wei Wang ◽  
Wei-Dong Zhu ◽  
Ling Zhang ◽  
...  

1996 ◽  
Vol 11 (4) ◽  
pp. 804-812 ◽  
Author(s):  
Y. Namikawa ◽  
M. Egami ◽  
S. Koyama ◽  
Y. Shiohara ◽  
H. Kutami

Large YBa2Cu3O7−x (Y123) single crystals (larger than 13 mm cubed) have been grown along the c-axis reproducibly by the modified pulling method. The crystallinity of Y123 single crystal was investigated by x-ray diffraction and x-ray topography. Crystals grown from an MgO single crystal seed had some low angle subgrain boundaries which tilted 0.1–0.8° from each other. These grain boundaries originated from the seed crystal, and the subgrains were extended along the growth direction from the seed crystal. Y123 single crystals with no marked subgrains in the whole area were obtained by using Y123 single subgrain crystal seeds. FWHM of the x-ray rocking curve for the crystal so produced was about 0.14°, which was much better than the spectrum consisting of several separated peaks obtained from the previous crystals. Tc onset of the annealed sample was about 93.6 K, and the transition width was about 0.9 K. The low angle subgrain boundaries did not seem to be effective pinning centers for the magnetic flux.


Sign in / Sign up

Export Citation Format

Share Document