scholarly journals Synchrotron Radiation-Based Refraction-Contrast Tomographic Images Using X-ray Dark-Field Imaging Optics in Human Lung Adenocarcinoma and Histologic Correlations

Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 487
Author(s):  
Eunjue Yi ◽  
Naoki Sunaguchi ◽  
Jeong Hyeon Lee ◽  
Chul-Yong Kim ◽  
Sungho Lee ◽  
...  

The aim of this study was to evaluate the clinical implication of synchrotron radiation imaging techniques for human lung adenocarcinoma in comparison with pathologic examination. A refraction-based tomographic imaging technique called the X-ray dark-field imaging (XDFI) method was used to obtain computed tomographic images of human lung adenocarcinoma at the beam line at Photon Factory BL 14B at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan. Images of normal lung tissue were also obtained using the same methods and reconstructed as 3D images. Both reconstructed images were compared with pathologic examinations from histologic slides which were made with identical samples. Pulmonary alveolar structure including terminal bronchioles, alveolar sacs, and vasculatures could be identified in synchrotron radiation images of normal lung. Hyperplasia of interstitial tissue and dysplasia of alveolar structures were noticed in images of lung adenocarcinoma. Both synchrotron radiation images were considerably correlated with images from histologic slides. Lepidic patterns of cancer tissue were distinguished from the invasive area in synchrotron radiation images of lung adenocarcinoma. Refraction-contrast tomographic techniques using synchrotron radiation could provide high-resolution images of lung adenocarcinoma which are compatible with those from pathologic examinations.

PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204565 ◽  
Author(s):  
Konstantin Willer ◽  
Alexander A. Fingerle ◽  
Lukas B. Gromann ◽  
Fabio De Marco ◽  
Julia Herzen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas P. Sauter ◽  
Jana Andrejewski ◽  
Manuela Frank ◽  
Konstantin Willer ◽  
Julia Herzen ◽  
...  

AbstractGrating-based X-ray dark-field imaging is a novel imaging modality with enormous technical progress during the last years. It enables the detection of microstructure impairment as in the healthy lung a strong dark-field signal is present due to the high number of air-tissue interfaces. Using the experience from setups for animal imaging, first studies with a human cadaver could be performed recently. Subsequently, the first dark-field scanner for in-vivo chest imaging of humans was developed. In the current study, the optimal tube voltage for dark-field radiography of the thorax in this setup was examined using an anthropomorphic chest phantom. Tube voltages of 50–125 kVp were used while maintaining a constant dose-area-product. The resulting dark-field and attenuation radiographs were evaluated in a reader study as well as objectively in terms of contrast-to-noise ratio and signal strength. We found that the optimum tube voltage for dark-field imaging is 70 kVp as here the most favorable combination of image quality, signal strength, and sharpness is present. At this voltage, a high image quality was perceived in the reader study also for attenuation radiographs, which should be sufficient for routine imaging. The results of this study are fundamental for upcoming patient studies with living humans.


2011 ◽  
Vol 110 (10) ◽  
pp. 109902 ◽  
Author(s):  
Michael Chabior ◽  
Tilman Donath ◽  
Christian David ◽  
Manfred Schuster ◽  
Christian Schroer ◽  
...  

2019 ◽  
pp. 75-96
Author(s):  
Deniz A. Bölükbas ◽  
Darcy E. Wagner

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jana Andrejewski ◽  
Fabio De Marco ◽  
Konstantin Willer ◽  
Wolfgang Noichl ◽  
Theresa Urban ◽  
...  

AbstractX-ray dark-field imaging is a widely researched imaging technique, with many studies on samples of very different dimensions and at very different resolutions. However, retrieval of three-dimensional (3D) information for human thorax sized objects has not yet been demonstrated. We present a method, similar to classic tomography and tomosynthesis, to obtain 3D information in X-ray dark-field imaging. Here, the sample is moved through the divergent beam of a Talbot–Lau interferometer. Projections of features at different distances from the source seemingly move with different velocities over the detector, due to the cone beam geometry. The reconstruction of different focal planes exploits this effect. We imaged a chest phantom and were able to locate different features in the sample (e.g. the ribs, and two sample vials filled with water and air and placed in the phantom) to corresponding focal planes. Furthermore, we found that image quality and detectability of features is sufficient for image reconstruction with a dose of 68 μSv at an effective pixel size of $$0.357 \times {0.357}\,\mathrm{mm}^{2}$$ 0.357 × 0.357 mm 2 . Therefore, we successfully demonstrated that the presented method is able to retrieve 3D information in X-ray dark-field imaging.


1999 ◽  
Vol 38 (Part 2, No. 12A) ◽  
pp. L1485-L1487 ◽  
Author(s):  
Hidekazu Takano ◽  
Kazuhiro Yokota ◽  
Sadao Aoki

Sign in / Sign up

Export Citation Format

Share Document