scholarly journals Performance Enhancement of Optimized Link State Routing Protocol by Parameter Configuration for UANET

Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 22
Author(s):  
Esmot Ara Tuli ◽  
Mohtasin Golam ◽  
Dong-Seong Kim ◽  
Jae-Min Lee

The growing need for wireless communication has resulted in the widespread usage of unmanned aerial vehicles (UAVs) in a variety of applications. Designing a routing protocol for UAVs is paramount as well as challenging due to its dynamic attributes. The difficulty stems from features other than mobile ad hoc networks (MANET), such as aerial mobility in 3D space and frequently changing topology. This paper analyzes the performance of four topology-based routing protocols, dynamic source routing (DSR), ad hoc on-demand distance vector (AODV), geographic routing protocol (GRP), and optimized link state routing (OLSR), by using practical simulation software OPNET 14.5. Performance evaluation carries out various metrics such as throughput, delay, and data drop rate. Moreover, the performance of the OLSR routing protocol is enhanced and named “E-OLSR” by tuning parameters and reducing holding time. The optimized E-OLSR settings provide better performance than the conventional request for comments (RFC 3626) in the experiment, making it suitable for use in UAV ad hoc network (UANET) environments. Simulation results indicate the proposed E-OLSR outperforms the existing OLSR and achieves supremacy over other protocols mentioned in this paper.

Author(s):  
Raad Alturki ◽  
Rashid Mehmood

The HCPR scheme is implemented as an extension to the OPNET simulation software and is analysed in detail for its QoS performance to deliver multimedia applications over ad hoc networks. It is compared with three well-known and widely used routing protocols: Ad Hoc On Demand Distance Vector (AODV), Optimised Link State Routing (OLSR), and Geographic Routing Protocol (GRP). Several networking scenarios have been carefully configured with variations in networks sizes, applications, codecs, and routing protocols to extensively analyse the proposed scheme. The HCPR enabled ad hoc network outperforms the well-known routing schemes, in particular for relatively large networks and high QoS network loads. These results are promising because many QoS schemes do work for small networks and low network loads but are unable to sustain performance for large networks and high QoS loads. Several directions to extend this research for future work are given.


2013 ◽  
Vol 846-847 ◽  
pp. 1452-1457
Author(s):  
Cheng Zhang

Vehicle Ad Hoc network (VANET) has grown fast in recent years. The routing protocol is one of the key technologies in VANET. Due to the particularity of VANET networks, the implementation and validation of all the protocols in realistic scenes are not possible. In this paper, we use the network simulation software OPNET to simulate the network models of VANET in different urban scenarios. We assessed the performance of Dynamic Source Routing (DSR) and Optimized Link State Routing (OLSR) protocols. Then we propose a new method by deploying the roadside equipment with Mobile IP. The results show that the performance is improved compared with the existing schemes.


Sign in / Sign up

Export Citation Format

Share Document