scholarly journals A Hybrid Fault Diagnosis Approach for Rotating Machinery with the Fusion of Entropy-Based Feature Extraction and SVM Optimized by a Chaos Quantum Sine Cosine Algorithm

Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 626 ◽  
Author(s):  
Wenlong Fu ◽  
Jiawen Tan ◽  
Chaoshun Li ◽  
Zubing Zou ◽  
Qiankun Li ◽  
...  

As crucial equipment during industrial manufacture, the health status of rotating machinery affects the production efficiency and device safety. Hence, it is of great significance to diagnose rotating machinery faults, which can contribute to guarantee the running stability and plan for maintenance, thus promoting production efficiency and economic benefits. For this purpose, a hybrid fault diagnosis model with entropy-based feature extraction and SVM optimized by a chaos quantum sine cosine algorithm (CQSCA) is developed in this research. Firstly, the state-of-the-art variational mode decomposition (VMD) is utilized to decompose the vibration signals into sets of components, during which process the preset parameter K is confirmed with the central frequency observation method. Subsequently, the permutation entropy values of all components are computed to constitute the feature vectors corresponding to different kind of signals. Later, the newly developed sine cosine algorithm (SCA) is employed and improved with chaotic initialization by a Duffing system and quantum technique to optimize the support vector machine (SVM) model, with which the fault pattern is recognized. Additionally, the availability of the optimized SVM with CQSCA was revealed in pattern recognition experiments. Finally, the proposed hybrid fault diagnosis approach was employed for engineering applications as well as contrastive analysis. The comparative results show that the proposed method achieved the best training accuracy 99.5% and best testing accuracy 97.89%. Furthermore, it can be concluded from the boxplots of different diagnosis methods that the stability and precision of the proposed method is superior to those of others.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 404 ◽  
Author(s):  
Wenlong Fu ◽  
Jiawen Tan ◽  
Yanhe Xu ◽  
Kai Wang ◽  
Tie Chen

Rolling bearings are a vital and widely used component in modern industry, relating to the production efficiency and remaining life of a device. An effective and robust fault diagnosis method for rolling bearings can reduce the downtime caused by unexpected failures. Thus, a novel fault diagnosis method for rolling bearings by fine-sorted dispersion entropy and mutation sine cosine algorithm and particle swarm optimization (SCA-PSO) optimized support vector machine (SVM) is presented to diagnose a fault of various sizes, locations and motor loads. Vibration signals collected from different types of faults are firstly decomposed by variational mode decomposition (VMD) into sets of intrinsic mode functions (IMFs), where the decomposing mode number K is determined by the central frequency observation method, thus, to weaken the non-stationarity of original signals. Later, the improved fine-sorted dispersion entropy (FSDE) is proposed to enhance the perception for relationship information between neighboring elements and then employed to construct the feature vectors of different fault samples. Afterward, a hybrid optimization strategy combining advantages of mutation operator, sine cosine algorithm and particle swarm optimization (MSCAPSO) is proposed to optimize the SVM model. The optimal SVM model is subsequently applied to realize the pattern recognition for different fault samples. The superiority of the proposed method is assessed through multiple contrastive experiments. Result analysis indicates that the proposed method achieves better precision and stability over some relevant methods, whereupon it is promising in the field of fault diagnosis for rolling bearings.


2019 ◽  
Vol 26 (3-4) ◽  
pp. 146-160
Author(s):  
Xianzhi Wang ◽  
Shubin Si ◽  
Yongbo Li ◽  
Xiaoqiang Du

Fault feature extraction of rotating machinery is crucial and challenging due to its nonlinear and nonstationary characteristics. In order to resolve this difficulty, a quality nonlinear fault feature extraction method is required. Hierarchical permutation entropy has been proven to be a promising nonlinear feature extraction method for fault diagnosis of rotating machinery. Compared with multiscale permutation entropy, hierarchical permutation entropy considers the fault information hidden in both high frequency and low frequency components. However, hierarchical permutation entropy still has some shortcomings, such as poor statistical stability for short time series and inability of analyzing multichannel signals. To address such disadvantages, this paper proposes a new entropy method, called refined composite multivariate hierarchical permutation entropy. Refined composite multivariate hierarchical permutation entropy can extract rich fault information hidden in multichannel signals synchronously. Based on refined composite multivariate hierarchical permutation entropy and random forest, a novel fault diagnosis framework is proposed in this paper. The effectiveness of the proposed method is validated using experimental and simulated signals. The results demonstrate that the proposed method outperforms multivariate multiscale fuzzy entropy, refined composite multivariate multiscale fuzzy entropy, multivariate multiscale sample entropy, multivariate multiscale permutation entropy, multivariate hierarchical permutation entropy, and composite multivariate hierarchical permutation entropy in recognizing the different faults of rotating machinery.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ling Shu ◽  
Jinxing Shen ◽  
Xiaoming Liu

With a view to solving the defect that multiscale amplitude-aware permutation entropy (MAAPE) can only quantify the low-frequency features of time series and ignore the high-frequency features which are equally important, a novel nonlinear time series feature extraction method, hierarchical amplitude-aware permutation entropy (HAAPE), is proposed. By constructing high and low-frequency operators, this method can extract the features of different frequency bands of time series simultaneously, so as to avoid the issue of information loss. In view of its advantages, HAAPE is introduced into the field of fault diagnosis to extract fault features from vibration signals of rotating machinery. Combined with the pairwise feature proximity (PWFP) feature selection method and gray wolf algorithm optimization support vector machine (GWO-SVM), a new intelligent fault diagnosis method for rotating machinery is proposed. In our method, firstly, HAPPE is adopted to extract the original high and low-frequency fault features of rotating machinery. After that, PWFP is used to sort the original features, and the important features are filtered to obtain low-dimensional sensitive feature vectors. Finally, the sensitive feature vectors are input into GWO-SVM for training and testing, so as to realize the fault identification of rotating machinery. The performance of the proposed method is verified using two data sets of bearing and gearbox. The results show that the proposed method enjoys obvious advantages over the existing methods, and the identification accuracy reaches 100%.


2021 ◽  
Author(s):  
B Peng ◽  
S Wan ◽  
Ying Bi ◽  
Bing Xue ◽  
Mengjie Zhang

IEEE Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, k-Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4542 ◽  
Author(s):  
Chen ◽  
Zhang ◽  
Zhao ◽  
Luo ◽  
Lin

The health state of rotating machinery directly affects the overall performance of the mechanical system. The monitoring of the operation condition is very important to reduce the downtime and improve the production efficiency. This paper presents a novel rotating machinery fault diagnosis method based on the improved multiscale amplitude-aware permutation entropy (IMAAPE) and the multiclass relevance vector machine (mRVM) to provide the necessary information for maintenance decisions. Once the fault occurs, the vibration amplitude and frequency of rotating machinery obviously changes and therefore, the vibration signal contains a considerable amount of fault information. In order to effectively extract the fault features from the vibration signals, the intrinsic time-scale decomposition (ITD) was used to highlight the fault characteristics of the vibration signal by extracting the optimum proper rotation (PR) component. Subsequently, the IMAAPE was utilized to realize the fault feature extraction from the PR component. In the IMAAPE algorithm, the coarse-graining procedures in the multi-scale analysis were improved and the stability of fault feature extraction was promoted. The coarse-grained time series of vibration signals at different time scales were firstly obtained, and the sensitivity of the amplitude-aware permutation entropy (AAPE) to signal amplitude and frequency was adopted to realize the fault feature extraction of coarse-grained time series. The multi-classifier based on the mRVM was established by the fault feature set to identify the fault type and analyze the fault severity of rotating machinery. In order to demonstrate the effectiveness and feasibility of the proposed method, the experimental datasets of the rolling bearing and gearbox were used to verify the proposed fault diagnosis method respectively. The experimental results show that the proposed method can be applied to the fault type identification and the fault severity analysis of rotating machinery with high accuracy.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Lei You ◽  
Wenjie Fan ◽  
Zongwen Li ◽  
Ying Liang ◽  
Miao Fang ◽  
...  

Fault diagnosis of rotating machinery mainly includes fault feature extraction and fault classification. Vibration signal from the operation of machinery usually could help diagnosing the operational state of equipment. Different types of fault usually have different vibrational features, which are actually the basis of fault diagnosis. This paper proposes a novel fault diagnosis model, which extracts features by combining vibration severity, dyadic wavelet energy time-spectrum, and coefficient power spectrum of the maximum wavelet energy level (VWC) at the feature extraction stage. At the stage of fault classification, we design a support vector machine (SVM) based on the modified shuffled frog-leaping algorithm (MSFLA) for the accurate classifying machinery fault method. Specifically, we use the MSFLA method to optimize SVM parameters. MSFLA can avoid getting trapped into local optimum, speeding up convergence, and improving classification accuracy. Finally, we evaluate our model on real rotating machinery platform, which has four different states, i.e., normal state, eccentric axle fault (EAF), bearing pedestal fault (BPF), and sealing ring wear fault (SRWF). As demonstrated by the results, the VWC method is efficient in extracting vibration signal features of rotating machinery. Based on the extracted features, we further compare our classification method with other three fault classification methods, i.e., backpropagation neural network (BPNN), artificial chemical reaction optimization algorithm (ACROA-SVM), and SFLA-SVM. The experiment results show that MSFLA-SVM achieves a much higher fault classification rate than BPNN, ACROA-SVM, and SFLA-SVM.


2021 ◽  
Author(s):  
B Peng ◽  
S Wan ◽  
Ying Bi ◽  
Bing Xue ◽  
Mengjie Zhang

IEEE Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, k-Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.


Author(s):  
Jianfeng Jiang

Objective: In order to diagnose the analog circuit fault correctly, an analog circuit fault diagnosis approach on basis of wavelet-based fractal analysis and multiple kernel support vector machine (MKSVM) is presented in the paper. Methods: Time responses of the circuit under different faults are measured, and then wavelet-based fractal analysis is used to process the collected time responses for the purpose of generating features for the signals. Kernel principal component analysis (KPCA) is applied to reduce the features’ dimensionality. Afterwards, features are divided into training data and testing data. MKSVM with its multiple parameters optimized by chaos particle swarm optimization (CPSO) algorithm is utilized to construct an analog circuit fault diagnosis model based on the testing data. Results: The proposed analog diagnosis approach is revealed by a four opamp biquad high-pass filter fault diagnosis simulation. Conclusion: The approach outperforms other commonly used methods in the comparisons.


Sign in / Sign up

Export Citation Format

Share Document