scholarly journals Estimating the Bed-Load Layer Thickness in Open Channels by Tsallis Entropy

Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 123 ◽  
Author(s):  
Zhongfan Zhu ◽  
Jingshan Yu

In the research field of river dynamics, the thickness of bed-load is an important parameter in determining sediment discharge in open channels. Some studies have estimated the bed-load thickness from theoretical and/or experimental perspectives. This study attempts to propose the mathematical formula for the bed-load thickness by using the Tsallis entropy theory. Assuming the bed-load thickness is a random variable and using the method for the maximization of the entropy function, the present study derives an explicit expression for the thickness of the bed-load layer as a function with non-dimensional shear stress, by adopting a hypothesis regarding the cumulative distribution function of the bed-load thickness. This expression is verified against six experimental datasets and are also compared with existing deterministic models and the Shannon entropy-based expression. It has been found that there is good agreement between the derived expression and the experimental data, and the derived expression has a better fitting accuracy than some existing deterministic models. It has been also found that the derived Tsallis entropy-based expression has a comparable prediction ability for experimental data to the Shannon entropy-based expression. Finally, the impacts of the mass density of the particle and particle diameter on the bed-load thickness in open channels are also discussed based on this derived expression.

Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 605
Author(s):  
Zhongfan Zhu ◽  
Pengfei Hei ◽  
Jie Dou ◽  
Dingzhi Peng

The velocity profile of an open channel is an important research topic in the context of open channel hydraulics; in particular, the velocity-dip position has drawn the attention of hydraulic scientists. In this study, analytical expressions for the velocity-dip position over the entire cross section and at the centerline of a rectangular open channel are derived by adopting probability methods based on the Tsallis and general index entropy theories. Two kinds of derived entropy-based expressions have the same mathematical form as a function of the lateral distance from the sidewall of the channel or of the aspect ratio of the channel. Furthermore, for the velocity-dip position over the entire cross section of the rectangular open channel, the derived expressions are compared with each other, as well as with two existing deterministic models and the existing Shannon entropy-based expression, using fifteen experimental datasets from the literature. An error analysis shows that the model of Yang et al. and the Tsallis entropy-based expression predict the lateral distribution of the velocity-dip position better than the other proposed models. For the velocity-dip position at the centerline of the rectangular open channel, six existing conventional models, the derived Tsallis and general index entropy-based expressions, and the existing Shannon entropy-based models are tested against twenty-one experimental datasets from the literature. The results show that the model of Kundu and the Shannon entropy-based expression have superior prediction accuracy with respect to experimental data compared with other models. With the exception of these models, the Tsallis entropy-based expression has the highest correlation coefficient value and the lowest root mean square error value for experimental data among the other models. This study indicates that the Tsallis entropy could be a good addition to existing deterministic models for predicting the lateral distribution of the velocity-dip position of rectangular open channel flow. This work also shows the potential of entropy-based expressions, the Shannon entropy and the Tsallis entropy in particular, to predict the velocity-dip position at the centerline of both narrow and wide rectangular open channels.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 845 ◽  
Author(s):  
Zhongfan Zhu

The flocculation of cohesive sediment plays an important role in affecting morphological changes to coastal areas, to dredging operations in navigational canals, to sediment siltation in reservoirs and lakes, and to the variation of water quality in estuarine waters. Many studies have been conducted recently to formulate a turbulence-induced flocculation model (described by a characteristic floc size with respect to flocculation time) of cohesive sediment by virtue of theoretical analysis, numerical modeling, and/or experimental observation. However, a probability study to formulate the flocculation model is still lacking in the literature. The present study, therefore, aims to derive an explicit expression for the flocculation of cohesive sediment in a turbulent fluid environment based on two common entropy theories: Shannon entropy and Tsallis entropy. This study derives an explicit expression for the characteristic floc size, assumed to be a random variable, as a function of flocculation time by maximizing the entropy function subject to the constraint equation using a hypothesis regarding the cumulative distribution function of floc size. It was found that both the Shannon entropy and the Tsallis entropy theories lead to the same expression. Furthermore, the derived expression was tested with experimental data from the literature and the results were compared with those of existing deterministic models, showing that it has good agreement with the experimental data and that it has a better prediction accuracy for the logarithmic growth pattern of data in comparison to the other models, whereas, for the sigmoid growth pattern of experimental data, the model of Keyvani and Strom or Son and Hsu model could be the better choice for floc size prediction. Finally, the maximum capacity of floc size growth, a key parameter incorporated into this expression, was found to exhibit an empirical power relationship with the flow shear rate.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 522 ◽  
Author(s):  
Zhongfan Zhu ◽  
Jingshan Yu ◽  
Jie Dou ◽  
Dingzhi Peng

In the context of river dynamics, some experimental results have shown that particle velocity is different from fluid velocity along the stream-wise direction for uniform sediment-laden open-channel flows; this velocity difference has been termed velocity lag in the literature. In this study, an analytical expression for estimating the velocity lag in open-channel flows was derived based on the Tsallis entropy theory together with the principle of maximum entropy. The derived expression represents the velocity lag as a function of a non-dimensional entropy parameter depending on the average and maximum values of velocity lag from experimental measurements. The derived expression was tested against twenty-two experimental datasets collected from the literature with three deterministic models and the developed Shannon entropy-based model. The Tsallis entropy-based model agreed better with the experimental datasets than the deterministic models for eighteen out of the twenty-two total real cases, and the prediction accuracy for the eighteen experimental datasets was comparable to that of the developed Shannon entropy-based model (the Tsallis entropy-based expression agreed slightly better than the Shannon entropy-based model for twelve out of eighteen test cases, whereas for the other six test cases, the Shannon entropy-based model had a slightly higher prediction accuracy). Finally, the effects of the friction velocity of the flow, the particle diameter, and the particles’ specific gravity on the velocity lag were analyzed based on the Tsallis entropy-based model. This study shows the potential of the Tsallis entropy theory together with the principle of maximum entropy to predict the stream-wise velocity lag between a particle and the surrounding fluid in sediment-laden open-channel flows.


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 55 ◽  
Author(s):  
Zhongfan Zhu ◽  
Hongrui Wang ◽  
Dingzhi Peng ◽  
Jie Dou

The settling velocity of a sediment particle is an important parameter needed for modelling the vertical flux in rivers, estuaries, deltas and the marine environment. It has been observed that a particle settles more slowly in the presence of other particles in the fluid than in a clear fluid, and this phenomenon has been termed ‘hindered settling’. The Richardson and Zaki equation has been a widely used expression for relating the hindered settling velocity of a particle with that in a clear fluid in terms of a concentration function and the power of the concentration function, and the power index is known as the exponent of reduction of the settling velocity. This study attempts to formulate the model for the exponent of reduction of the settling velocity by using the probability method based on the Tsallis entropy theory. The derived expression is a function of the volumetric concentration of the suspended particle, the relative mass density of the particle and the particle’s Reynolds number. This model is tested against experimental data collected from the literature and against five existing deterministic models, and this model shows good agreement with the experimental data and gives better prediction accuracy than the other deterministic models. The derived Tsallis entropy-based model is also compared with the existing Shannon entropy-based model for experimental data, and the Tsallis entropy-based model is comparable to the Shannon entropy-based model for predicting the hindered settling velocity of a falling particle in a particle-fluid mixture. This study shows the potential of using the Tsallis entropy together with the principle of maximum entropy to predict the hindered settling velocity of a falling particle in a particle-fluid mixture.


Author(s):  
Aniruddha Choudhary ◽  
Ian T. Voyles ◽  
Christopher J. Roy ◽  
William L. Oberkampf ◽  
Mayuresh Patil

Our approach to the Sandia Verification and Validation Challenge Problem is to use probability bounds analysis (PBA) based on probabilistic representation for aleatory uncertainties and interval representation for (most) epistemic uncertainties. The nondeterministic model predictions thus take the form of p-boxes, or bounding cumulative distribution functions (CDFs) that contain all possible families of CDFs that could exist within the uncertainty bounds. The scarcity of experimental data provides little support for treatment of all uncertain inputs as purely aleatory uncertainties and also precludes significant calibration of the models. We instead seek to estimate the model form uncertainty at conditions where the experimental data are available, then extrapolate this uncertainty to conditions where no data exist. The modified area validation metric (MAVM) is employed to estimate the model form uncertainty which is important because the model involves significant simplifications (both geometric and physical nature) of the true system. The results of verification and validation processes are treated as additional interval-based uncertainties applied to the nondeterministic model predictions based on which the failure prediction is made. Based on the method employed, we estimate the probability of failure to be as large as 0.0034, concluding that the tanks are unsafe.


2020 ◽  
Vol 9 (9) ◽  
pp. e49996648
Author(s):  
David da Silva Vasconcelos ◽  
Sirlene Barbosa Lima ◽  
Ana Cristina Morais da Silva ◽  
José Mário Ferreira Júnior ◽  
Carlos Augusto de Moraes Pires

In a previous study, a statistical model was developed using the experimental planning technique for evaluating the influence of its variables on fluidization velocity. In this study, we investigated the Vasconcelos-statistical model (VSM) in data representation, considering fluidization with and without segregation. The methodology used was based on the simulation of the fluidization velocity of nine binary systems, comprising sand, and eight biomasses published by six authors. In addition, the results obtained using VSM were compared with those obtained using five other models, reported by different authors, but adjusted to the experimental data of these biomasses. The result obtained by the proposed models mainly indicated a discrepancy between the experimental and calculated fluidization velocities. VSM, using only three variables (particle size, particle diameter, and biomass mass fraction), yielded results of smaller discrepancy values in all simulations (2.23–12.51%), as opposed to the other comparative models, which presented more significant numbers of variables. Thus, VSM is defined as one of the most interesting models for predicting the fluidization velocity of several biomasses.


Atoms ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 70 ◽  
Author(s):  
Jen-Hao Ou ◽  
Yew Kam Ho

Knowledge of the electronic structures of atomic and molecular systems deepens our understanding of the desired system. In particular, several information-theoretic quantities, such as Shannon entropy, have been applied to quantify the extent of electron delocalization for the ground state of various systems. To explore excited states, we calculated Shannon entropy and two of its one-parameter generalizations, Rényi entropy of order α and Tsallis entropy of order α , and Onicescu Information Energy of order α for four low-lying singly excited states (1s2s 1 S e , 1s2s 3 S e , 1s3s 1 S e , and 1s3s 3 S e states) of helium. This paper compares the behavior of these three quantities of order 0.5 to 9 for the ground and four excited states. We found that, generally, a higher excited state had a larger Rényi entropy, larger Tsallis entropy, and smaller Onicescu information energy. However, this trend was not definite and the singlet–triplet reversal occurred for Rényi entropy, Tsallis entropy and Onicescu information energy at a certain range of order α .


Author(s):  
Manotosh Kumbhakar ◽  
Rajendra K. Ray ◽  
Suvra Kanti Chakraborty ◽  
Koeli Ghoshal ◽  
Vijay P. Singh

Author(s):  
Makoto Yasuda ◽  
◽  
Yasuyuki Orito

Tsallis entropy is aq-parameter extension of Shannon entropy. Based on the Tsallis entropy, we have introduced an entropy maximization method to fuzzyc-means clustering (FCM), and developed a new clustering algorithm using a single-qvalue. In this article, we propose a multi-qextension of the conventional single-qmethod. In this method, theqs are assigned individually to each cluster. Eachqvalue is determined so that the membership function fits the corresponding cluster distribution. This is done to improve the accuracy of clustering over that of the conventional single-qmethod. Experiments are performed on randomly generated numerical data and Fisher’s iris dataset, and it is confirmed that the proposed method improves the accuracy of clustering and is superior to the conventional single-qmethod. If the parameters introduced in the proposed method can be optimized, it is expected that the clusters in data distributions that are composed of clusters of various sizes can be determined more accurately.


Author(s):  
Yuchi Kanzawa ◽  

In this study, we present a fuzzy counterpart to the probabilistic latent semantic analysis (PLSA) approach. It is derived by solving the optimization problem of Tsallis entropy-penalizing free energy of a pseudo PLSA model by using a modified i.i.d. assumption. This derivation is similar to that of the conventional fuzzy counterpart of the PLSA, which involves solving the optimization problem of Shannon entropy-penalizing free energy. Furthermore, the proposed method is validated using numerical examples.


Sign in / Sign up

Export Citation Format

Share Document