Hindered Settling
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 19)

H-INDEX

23
(FIVE YEARS 4)

Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 11
Author(s):  
Robin Trunk ◽  
Timo Weckerle ◽  
Nicolas Hafen ◽  
Gudrun Thäter ◽  
Hermann Nirschl ◽  
...  

The simulation of surface resolved particles is a valuable tool to gain more insights in the behaviour of particulate flows in engineering processes. In this work the homogenized lattice Boltzmann method as one approach for such direct numerical simulations is revisited and validated for different scenarios. Those include a 3D case of a settling sphere for various Reynolds numbers. On the basis of this dynamic case, different algorithms for the calculation of the momentum exchange between fluid and particle are evaluated along with different forcing schemes. The result is an updated version of the method, which is in good agreement with the benchmark values based on simulations and experiments. The method is then applied for the investigation of the tubular pinch effect discovered by Segré and Silberberg and the simulation of hindered settling. For the latter, the computational domain is equipped with periodic boundaries for both fluid and particles. The results are compared to the model by Richardson and Zaki and are found to be in good agreement. As no explicit contact treatment is applied, this leads to the assumption of sufficient momentum transfer between particles via the surrounding fluid. The implementations are based on the open-source C++ lattice Boltzmann library OpenLB.


2020 ◽  
Author(s):  
Chenjuan Jiang ◽  
Huib E. de Swart ◽  
Jianan Zhou ◽  
Jiufa Li

<p>Many estuaries are characterized by one or more locations where the concentration of fine sediment attains a maximum. The locations and intensities of these estuarine turbidity maxima (ETM) are sensitive to river discharge, tides, depth and sediment properties. In this contribution, results are presented of a width-averaged process-based model that describes tides, residual currents and sediment transport in an estuarine channel. The aim is to quantify the sensitivity of location and intensity of ETM to 1) flocculation and hindered settling of fine sediment and 2) sediment-induced damping of turbulence. The model is applied to the North Passage of the Yangtze Estuary, which is a prototype estuary that undergoes strong variations in environmental conditions. The sediment settling velocity is allowed to vary along the channel due to the effects of flocculation and hindered settling, by parametrizing settling velocity as the function of the subtidal near-bed sediment concentration according to results obtained from laboratory experiments. Sediment-induced turbulence damping is taken into account by parametrizing eddy viscosity and eddy diffusivity coefficients as functions of bulk Richardson number.</p><p>In the flocculation (low concentration) regime, where the settling velocity increases with sediment concentration, the rapid settling of flocs induces larger landward sediment transport due to upstream flow in the lower layer of density-driven flow, leading to a landward shift and intensification of the ETM (with respect to the case of a constant settling velocity). In the hindered settling (high concentration) regime, the settling velocity decreases with bottom concentration. This induces a decrease in upstream sediment transport due to density-driven flow and an increase in seaward sediment transport due to river flow, leading to seaward migration and attenuation of the ETM. In both regimes, sediment-induced damping of turbulence results in stronger upstream flow in the bottom layer of density-driven flow and more vertically stratified sediment distribution, which significantly intensifies the landward sediment transport due to density driven flow, and hence causes a landward shift and intensification of the ETM.</p>


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 845 ◽  
Author(s):  
Bowen Li ◽  
Yonggang Jia ◽  
J. Paul Liu ◽  
Xiaolei Liu ◽  
Zhenhao Wang

Historically, the Yellow River in China discharges > 1 × 109 ton/yr sediment to the sea, and has formed a large delta in the western Bohai Sea. Its river mouth is characterized by an extremely high suspended sediment concentration (SSC), up to 50 g/L. However, the hydrodynamic factors controlling the high suspended sediments in the Yellow River estuary are not well understood. Here, we conducted two hydrodynamic observations and SSC measurements in the winter and spring low-flow seasons of 2014–2015 and 2016–2017 under five sea conditions, including calm-rippled, smooth-wavelet, slight, moderate, and rough, in the Yellow River Delta-front during the observation period. Under calm-rippled conditions, the contribution of currents to the total resuspended sediment concentration (RSC) was 77.7%–100.0%. During the smooth-wavelet and slight periods, the currents’ contribution decreased as low as 30% and 3.0% of the total RSC, respectively. Under moderate and rough-sea conditions, waves accounted for at least 70% and 85% of the total RSC, respectively. The results indicate that 20 cm-thick lutoclines were created after a significant increase in the wave height to a peak value followed by a decrease. When the SSC is over 3 g/L and hydrodynamic conditions could not break the lutoclines, the flocculent settling of suspended sediment changes to hindered settling in the Yellow River Delta. Under hindered settling, the settling velocity decreases, and the resuspended sediments remains in the lutoclines and their lower water layers. This study reveals different controlling factors for the high SSC near a river-influenced delta, and helps us get a better understanding of a delta’s resuspension and settling mechanisms.


2020 ◽  
Vol 81 (8) ◽  
pp. 1715-1722 ◽  
Author(s):  
R. Bürger ◽  
J. Careaga ◽  
S. Diehl

Abstract Most models of sedimentation contain the nonlinear hindered-settling flux function. If one assumes ideal conditions and no compression, then there exist several theoretically possible ways of identifying a large portion of the flux function from only one experiment by means of formulas derived from the theory of solutions of partial differential equations. Previously used identification methods and recently published such, which are based on utilizing conical vessels or centrifuges, are reviewed and compared with synthetic data (simulated experiments). This means that the identification methods are evaluated from a theoretical viewpoint without experimental errors or difficulties. The main contribution of the recent methods reviewed is that they, in theory, can identify a large portion of the flux function from a single experiment, in contrast to the traditional method that provides one point on the flux curve from each test. The new methods lay the foundation of rapid flux identification; however, experimental procedures need to be elaborated.


Sign in / Sign up

Export Citation Format

Share Document