hindered settling velocity
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 1)

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2822 ◽  
Author(s):  
Morteza Roostaei ◽  
Alireza Nouri ◽  
Vahidoddin Fattahpour ◽  
Dave Chan

This paper focuses on the study of proppant transport mechanisms in fractures during frac-packing operation. A multi-module, numerical proppant, reservoir and geomechanics simulator has been developed, which improves the current numerical modeling techniques for proppant transport. The modules are linked together and tailored to capture the processes and mechanisms that are significant in frac-pack operations. The proposed approach takes advantage of a robust and sophisticated numerical smeared fracture simulator and incorporates an in-house proppant transport module to calculate propped fracture dimensions and concentration distribution. In the development of software capability, the propped fracture geometry and proppant concentration, which are the output of the proppant module, are imported to the hydraulic fracture simulator through mobility modification. Complex issues of proppant transport in fractures that are addressed in the literature and captured by the current model are: hindered settling velocity (terminal velocity of proppant in the injection fluid), the effect of fracture walls, proppant concentration and inertia on settling (due to extra drag forces applied on particles, compared to single-particle motion in Stokes regime in unbounded medium), possible propped fracture porosity and also mobility change due to the presence of proppant, and fracture closure or extension during proppant injection. A sensitivity analysis is conducted using realistic parameters to provide guidelines that allow more accurate predictions of the proppant concentration and fluid flow. The main objective of this study is to link a numerical hydraulic fracture model to a proppant transport model to study the fracturing response and proppant distribution and to investigate the effect of proppant injection on fracture propagation and fracture dimensions.


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 55 ◽  
Author(s):  
Zhongfan Zhu ◽  
Hongrui Wang ◽  
Dingzhi Peng ◽  
Jie Dou

The settling velocity of a sediment particle is an important parameter needed for modelling the vertical flux in rivers, estuaries, deltas and the marine environment. It has been observed that a particle settles more slowly in the presence of other particles in the fluid than in a clear fluid, and this phenomenon has been termed ‘hindered settling’. The Richardson and Zaki equation has been a widely used expression for relating the hindered settling velocity of a particle with that in a clear fluid in terms of a concentration function and the power of the concentration function, and the power index is known as the exponent of reduction of the settling velocity. This study attempts to formulate the model for the exponent of reduction of the settling velocity by using the probability method based on the Tsallis entropy theory. The derived expression is a function of the volumetric concentration of the suspended particle, the relative mass density of the particle and the particle’s Reynolds number. This model is tested against experimental data collected from the literature and against five existing deterministic models, and this model shows good agreement with the experimental data and gives better prediction accuracy than the other deterministic models. The derived Tsallis entropy-based model is also compared with the existing Shannon entropy-based model for experimental data, and the Tsallis entropy-based model is comparable to the Shannon entropy-based model for predicting the hindered settling velocity of a falling particle in a particle-fluid mixture. This study shows the potential of using the Tsallis entropy together with the principle of maximum entropy to predict the hindered settling velocity of a falling particle in a particle-fluid mixture.


2017 ◽  
Vol 110 ◽  
pp. 38-47 ◽  
Author(s):  
Elena Torfs ◽  
Sophie Balemans ◽  
Florent Locatelli ◽  
Stefan Diehl ◽  
Raimund Bürger ◽  
...  

2008 ◽  
Vol 55 (12) ◽  
pp. 1197-1208 ◽  
Author(s):  
Alan Cuthbertson ◽  
Ping Dong ◽  
Stuart King ◽  
Peter Davies

Sign in / Sign up

Export Citation Format

Share Document