scholarly journals Stationary Wavelet-Fourier Entropy and Kernel Extreme Learning for Bearing Multi-Fault Diagnosis

Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 540 ◽  
Author(s):  
Nibaldo Rodriguez ◽  
Lida Barba ◽  
Pablo Alvarez ◽  
Guillermo Cabrera-Guerrero

Bearing fault diagnosis methods play an important role in rotating machine health monitoring. In recent years, various intelligent fault diagnosis methods have been proposed, which are mainly based on the features extraction method combined with either shallow or deep learning methods. During the last few years, Shannon entropy features have been widely used in machine health monitoring, improving the accuracy of the bearing fault diagnosis process. Therefore, in this paper, we consider the combination of multi-scale stationary wavelet packet analysis with the Fourier amplitude spectrum to obtain a new discriminative Shannon entropy feature that we call stationary wavelet packet Fourier entropy (SWPFE). Features extracted by our SWPFE method are then passed onto a shallow kernel extreme learning machine (KELM) classifier to diagnose bearing failure types with different severities. The proposed method was applied on two experimental vibration signal databases of a rolling element bearing and compared to two recently proposed methods called stationary wavelet packet permutation entropy (SWPPE) and stationary wavelet packet dispersion entropy (SWPPE). Based on our results, we can say that the proposed method is able to achieve better accuracy levels than both the SWPPE and SWPDE methods using fewer failure features. Further, as our method does not require any hyperparameter calibration step, it is less dependent on user experience/expertise.

2020 ◽  
Vol 10 (18) ◽  
pp. 6385 ◽  
Author(s):  
Minh Tuan Pham ◽  
Jong-Myon Kim ◽  
Cheol Hong Kim

Predicting bearing faults is an essential task in machine health monitoring because bearings are vital components of rotary machines, especially heavy motor machines. Moreover, indicating the degradation level of bearings will help factories plan maintenance schedules. With advancements in the extraction of useful information from vibration signals, diagnosis of motor failures by maintenance engineers can be gradually replaced by an automatic detection process. Especially, state-of-the-art methods using deep learning have contributed significantly to automatic fault diagnosis. This paper proposes a novel method for diagnosing bearing faults and their degradation level under variable shaft speed. In the proposed method, vibration signals are represented by spectrograms to apply deep learning methods through preprocessing using Short-Time Fourier Transform (STFT). Then, feature extraction and health status classification are performed by a convolutional neural network (CNN), VGG16. According to our various experiments, our proposed method can achieve very high accuracy and robustness for bearing fault diagnosis even under noisy environments.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


Author(s):  
Ying Zhang ◽  
Hongfu Zuo ◽  
Fang Bai

There are mainly two problems with the current feature extraction methods used in the electrostatic monitoring of rolling bearings, which affect their abilities to identify early faults: (1) since noises are mixed in the electrostatic signals, it is difficult to extract weak early fault features; (2) traditional time and frequency domain features have limited ability to provide a quantitative indicator of degradation state. With regard to these two problems, a new feature extraction method for rolling bearing fault diagnosis by electrostatic monitoring sensors is proposed in this paper. First, the spectrum interpolation is adopted to suppress the power-frequency interference in the electrostatic signal. Then the resultant signal is used to construct Hankel matrix, the number of useful components is automatically selected based on the difference spectrum of singular values, after that the signal is reconstructed to remove background noises and random pulses. Finally, the permutation entropy of the denoised signal is calculated and smoothed using the exponential weighted moving average method, which is used to be a quantitative indicator of bearing performance state. The simulation and experimental results show that the proposed method can effectively remove noises and significantly bring forward the time when early faults are detected.


Sign in / Sign up

Export Citation Format

Share Document