scholarly journals Entropy Analysis in Double-Diffusive Convection in Nanofluids through Electro-osmotically Induced Peristaltic Microchannel

Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 986 ◽  
Author(s):  
Noreen ◽  
Waheed ◽  
Hussanan ◽  
Lu

A theoretical study is presented to examine entropy generation in double-diffusive convection in an Electro-osmotic flow (EOF) of nanofluids via a peristaltic microchannel. Buoyancy effects due to change in temperature, solute concentration and nanoparticle volume fraction are also considered. This study was performed under lubrication and Debye-Hückel linearization approximation. The governing equations are solved exactly. The effect of dominant hydrodynamic parameters (thermophoresis, Brownian motion, Soret and Dufour), Grashof numbers (thermal, concentration and nanoparticle) and electro-osmotic parameters on double-diffusive convective flow are discussed. Moreover, trapping, pumping, entropy generation number, Bejan number and heat transfer rate were also examined under the influence of pertinent parameters such as the thermophoresis parameter, the Brownian motion parameter, the Soret parameter, the Dufour parameter, the thermal Grashof number, the solutal Grashof number, the nanoparticle Grashof number, the electro-osmotic parameter and Helmholtz–Smoluchowski velocity. The electro-osmotic parameter powerfully affected the velocity profile. The magnitude of total entropy generation increased as the thermophoresis parameter and Brownian motion parameter increased. Soret and the Dufour parameter had a strong tendency to control the temperature profile and Bejan number. The findings of the present analysis can be used in clinical purposes such as cell therapy, drug delivery systems, pharmaco-dynamic pumps and particles filtration.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Safia Akram ◽  
Maria Athar ◽  
Khalid Saeed ◽  
Taseer Muhammad ◽  
Mir Yasir Umair

The significance of partial slip on double diffusive convection on magneto-Carreau nanofluid through inclined peristaltic asymmetric channel is examined in this paper. The two-dimensional and directional flow of a magneto-Carreau nanofluid is mathematically described in detail. Under the lubrication technique, the proposed model is simplified. The solutions of extremely nonlinear partial differential equations are calculated using a numerical technique. Graphical data are displayed using Mathematica software and Matlab to examine how temperature, pressure rise, concentration, pressure gradient, velocity profile, nanoparticle volume fraction, and stream functions behave on emerging parameters. It is noticed that as the velocity slip parameter is increased, the axial velocity at the channel’s center increases. Additionally, near the boundary, opposite behavior is observed. The temperature, concentration, and nanoparticle profile drops by increasing thermal slip, concentration slip, and nanoparticle slip parameter.


2020 ◽  
Vol 17 (1) ◽  
pp. 31-38
Author(s):  
K. Maruthi Prasad ◽  
Prabhaker Reddy Yasa

In this paper, the effect of slip on Micropolar fluid in a circular tube of non-uniform cross-section with multiple stenosis have been studied. The coupled equations governing to the flow are calculated by using Homotopy Perturbation Method. The effects of various parameters with heights of the stenosis on the resistance to the flow and wall shear stress have been studied by deriving the expressions for the flow characteristics and their solutions have been obtained. It is found that the resistance to the flow increases with the heights of the stenosis, inclination, Thermophoresis parameter, local temperature Grashof number, local nanoparticle Grashof number, inclination and permeability constant and decreases with Brownian motion parameter. It is found that the shear stress at the wall increases with heights of the stenosis, Brownian motion parameter but decreases with local nanoparticle Grashof number, Thermophoresis parameter and permeability constant. Also, it is observed that the volume of the bolus increases with the increase of permeability constant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdulaziz Alsenafi ◽  
O. Anwar Bég ◽  
M. Ferdows ◽  
Tasveer A. Bég ◽  
A. Kadir

AbstractA mathematical model is developed for stagnation point flow toward a stretching or shrinking sheet of liquid nano-biofilm containing spherical nano-particles and bioconvecting gyrotactic micro-organisms. Variable transport properties of the liquid (viscosity, thermal conductivity, nano-particle species diffusivity) and micro-organisms (species diffusivity) are considered. Buongiorno’s two-component nanoscale model is deployed and spherical nanoparticles in a dilute nanofluid considered. Using a similarity transformation, the nonlinear systems of partial differential equations is converted into nonlinear ordinary differential equations. These resulting equations are solved numerically using a central space finite difference method in the CodeBlocks Fortran platform. Graphical plots for the distribution of reduced skin friction coefficient, reduced Nusselt number, reduced Sherwood number and the reduced local density of the motile microorganisms as well as the velocity, temperature, nanoparticle volume fraction and the density of motile microorganisms are presented for the influence of wall velocity power-law index (m), viscosity parameter $$({c}_{2})$$ ( c 2 ) , thermal conductivity parameter (c4), nano-particle mass diffusivity (c6), micro-organism species diffusivity (c8), thermophoresis parameter $$(Nt)$$ ( N t ) , Brownian motion parameter $$(Nb)$$ ( N b ) , Lewis number $$(Le)$$ ( L e ) , bioconvection Schmidt number $$(Sc)$$ ( S c ) , bioconvection constant (σ) and bioconvection Péclet number $$(Pe)$$ ( P e ) . Validation of the solutions via comparison related to previous simpler models is included. Further verification of the general model is conducted with the Adomian decomposition method (ADM). Extensive interpretation of the physics is included. Skin friction is elevated with viscosity parameter ($${\mathrm{c}}_{2})$$ c 2 ) whereas it is suppressed with greater Lewis number and thermophoresis parameter. Temperatures are elevated with increasing thermal conductivity parameter ($${\mathrm{c}}_{4})$$ c 4 ) whereas Nusselt numbers are reduced. Nano-particle volume fraction (concentration) is enhanced with increasing nano-particle mass diffusivity parameter ($${c}_{6}$$ c 6 ) whereas it is markedly reduced with greater Lewis number (Le) and Brownian motion parameter (Nb). With increasing stretching/shrinking velocity power-law exponent ($$m),$$ m ) , skin friction is decreased whereas Nusselt number and Sherwood number are both elevated. Motile microorganism density is boosted strongly with increasing micro-organism diffusivity parameter ($${\mathrm{c}}_{8}$$ c 8 ) and Brownian motion parameter (Nb) but reduced considerably with greater bioconvection Schmidt number (Sc) and bioconvection Péclet number (Pe). The simulations find applications in deposition processes in nano-bio-coating manufacturing processes.


Sign in / Sign up

Export Citation Format

Share Document