scholarly journals Statistical Inference of the Half-Logistic Inverse Rayleigh Distribution

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 449 ◽  
Author(s):  
Abdullah M. Almarashi ◽  
Majdah M. Badr ◽  
Mohammed Elgarhy ◽  
Farrukh Jamal ◽  
Christophe Chesneau

The inverse Rayleigh distribution finds applications in many lifetime studies, but has not enough overall flexibility to model lifetime phenomena where moderately right-skewed or near symmetrical data are observed. This paper proposes a solution by introducing a new two-parameter extension of this distribution through the use of the half-logistic transformation. The first contribution is theoretical: we provide a comprehensive account of its mathematical properties, specifically stochastic ordering results, a general linear representation for the exponentiated probability density function, raw/inverted moments, incomplete moments, skewness, kurtosis, and entropy measures. Evidences show that the related model can accommodate the treatment of lifetime data with different right-skewed features, so far beyond the possibility of the former inverse Rayleigh model. We illustrate this aspect by exploring the statistical inference of the new model. Five classical different methods for the estimation of the model parameters are employed, with a simulation study comparing the numerical behavior of the different estimates. The estimation of entropy measures is also discussed numerically. Finally, two practical data sets are used as application to attest of the usefulness of the new model, with favorable goodness-of-fit results in comparison to three recent extended inverse Rayleigh models.

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1850
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

Unit distributions are commonly used in probability and statistics to describe useful quantities with values between 0 and 1, such as proportions, probabilities, and percentages. Some unit distributions are defined in a natural analytical manner, and the others are derived through the transformation of an existing distribution defined in a greater domain. In this article, we introduce the unit gamma/Gompertz distribution, founded on the inverse-exponential scheme and the gamma/Gompertz distribution. The gamma/Gompertz distribution is known to be a very flexible three-parameter lifetime distribution, and we aim to transpose this flexibility to the unit interval. First, we check this aspect with the analytical behavior of the primary functions. It is shown that the probability density function can be increasing, decreasing, “increasing-decreasing” and “decreasing-increasing”, with pliant asymmetric properties. On the other hand, the hazard rate function has monotonically increasing, decreasing, or constant shapes. We complete the theoretical part with some propositions on stochastic ordering, moments, quantiles, and the reliability coefficient. Practically, to estimate the model parameters from unit data, the maximum likelihood method is used. We present some simulation results to evaluate this method. Two applications using real data sets, one on trade shares and the other on flood levels, demonstrate the importance of the new model when compared to other unit models.


2017 ◽  
Vol 6 (3) ◽  
pp. 75
Author(s):  
Tiago V. F. Santana ◽  
Edwin M. M. Ortega ◽  
Gauss M. Cordeiro ◽  
Adriano K. Suzuki

A new regression model based on the exponentiated Weibull with the structure distribution and the structure of the generalized linear model, called the generalized exponentiated Weibull linear model (GEWLM), is proposed. The GEWLM is composed by three important structural parts: the random component, characterized by the distribution of the response variable; the systematic component, which includes the explanatory variables in the model by means of a linear structure; and a link function, which connects the systematic and random parts of the model. Explicit expressions for the logarithm of the likelihood function, score vector and observed and expected information matrices are presented. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. To detect influential observations in the new model, we use diagnostic measures based on the local influence and Bayesian case influence diagnostics. Also, we show that the estimates of the GEWLM are  robust to deal with the presence of outliers in the data. Additionally, to check whether the model supports its assumptions, to detect atypical observations and to verify the goodness-of-fit of the regression model, we define residuals based on the quantile function, and perform a Monte Carlo simulation study to construct confidence bands from the generated envelopes. We apply the new model to a dataset from the insurance area.


2018 ◽  
Vol 7 (5) ◽  
pp. 120
Author(s):  
T. H. M. Abouelmagd

A new version of the Lomax model is introduced andstudied. The major justification for the practicality of the new model isbased on the wider use of the Lomax model. We are also motivated tointroduce the new model since the density of the new distribution exhibitsvarious important shapes such as the unimodal, the right skewed and the leftskewed. The new model can be viewed as a mixture of the exponentiated Lomaxdistribution. It can also be considered as a suitable model for fitting thesymmetric, left skewed, right skewed, and unimodal data sets. The maximumlikelihood estimation method is used to estimate the model parameters. Weprove empirically the importance and flexibility of the new model inmodeling two types of aircraft windshield lifetime data sets. The proposedlifetime model is much better than gamma Lomax, exponentiated Lomax, Lomaxand beta Lomax models so the new distribution is a good alternative to thesemodels in modeling aircraft windshield data.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Author(s):  
Jamilu Yunusa Falgore

In this article, an extension of Inverse Lomax (IL) distribution with the Zubair-G family is considered . Various statistical properties of the new model where derived, including moment generating function, R´enyi entropy, and order statistics. A Monte Carlo simulation study was presented to evaluate the performance of the maximum likelihood estimators. The new model can be skew to the right, constant, and decreasing functions depending on the parameter values.We discussed the estimation of the model parameters by maximum likelihood method. The application of the new model to the data sets indicates that the new model is better than the existing competitors as it has minimum value of statistics criteria.


2021 ◽  
Vol 67 (1) ◽  
pp. 1-59
Author(s):  
Christophe Chesneau ◽  

Engineers, economists, hydrologists, social scientists, and behavioural scientists often deal with data belonging to the unit interval. One of the most common approaches for modeling purposes is the use of unit distributions, beginning with the classical power distribution. A simple way to improve its applicability is proposed by the transmuted scheme. We propose an alternative in this article by slightly modifying this scheme with a logarithmic weighted function, thus creating the log-weighted power distribution. It can also be thought of as a variant of the log-Lindley distribution, and some other derived unit distributions. We investigate its statistical and functional capabilities, and discuss how it distinguishes between power and transmuted power distributions. Among the functions derived from the log-weighted distribution are the cumulative distribution, probability density, hazard rate, and quantile functions. When appropriate, a shape analysis of them is performed to increase the exibility of the proposed modelling. Various properties are investigated, including stochastic ordering (first order), generalized logarithmic moments, incomplete moments, Rényi entropy, order statistics, reliability measures, and a list of new distributions derived from the main one are offered. Subsequently, the estimation of the model parameters is discussed through the maximum likelihood procedure. Then, the proposed distribution is tested on a few data sets to show in what concrete statistical scenarios it may outperform the transmuted power distribution.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1954
Author(s):  
Rashad A. R. Bantan ◽  
Christophe Chesneau ◽  
Farrukh Jamal ◽  
Mohammed Elgarhy ◽  
Muhammad H. Tahir ◽  
...  

The unit-Rayleigh distribution is a one-parameter distribution with support on the unit interval. It is defined as the so-called unit-Weibull distribution with a shape parameter equal to two. As a particular case among others, it seems that it has not been given special attention. This paper shows that the unit-Rayleigh distribution is much more interesting than it might at first glance, revealing closed-form expressions of important functions, and new desirable properties for application purposes. More precisely, on the theoretical level, we contribute to the following aspects: (i) we bring new characteristics on the form analysis of its main probabilistic and reliability functions, and show that the possible mode has a simple analytical expression, (ii) we prove new stochastic ordering results, (iii) we expose closed-form expressions of the incomplete and probability weighted moments at the basis of various probability functions and measures, (iv) we investigate distributional properties of the order statistics, (v) we show that the reliability coefficient can have a simple ratio expression, (vi) we provide a tractable expansion for the Tsallis entropy and (vii) we propose some bivariate unit-Rayleigh distributions. On a practical level, we show that the maximum likelihood estimate has a quite simple closed-form. Three data sets are analyzed and adjusted, revealing that the unit-Rayleigh distribution can be a better alternative to standard one-parameter unit distributions, such as the one-parameter Kumaraswamy, Topp–Leone, one-parameter beta, power and transmuted distributions.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Yinglin Liu ◽  
Muhammad Ilyas ◽  
Saima K. Khosa ◽  
Eisa Muhmoudi ◽  
Zubair Ahmad ◽  
...  

Statistical distributions play a prominent role in applied sciences, particularly in biomedical sciences. The medical data sets are generally skewed to the right, and skewed distributions can be used quite effectively to model such data sets. In the present study, therefore, we propose a new family of distributions to model right skewed medical data sets. The proposed family may be named as a flexible reduced logarithmic-X family. The proposed family can be obtained via reparameterizing the exponentiated Kumaraswamy G-logarithmic family and the alpha logarithmic family of distributions. A special submodel of the proposed family called, a flexible reduced logarithmic-Weibull distribution, is discussed in detail. Some mathematical properties of the proposed family and certain related characterization results are presented. The maximum likelihood estimators of the model parameters are obtained. A brief Monte Carlo simulation study is done to evaluate the performance of these estimators. Finally, for the illustrative purposes, three applications from biomedical sciences are analyzed and the goodness of fit of the proposed distribution is compared to some well-known competitors.


Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Muhammad Arslan Nasir ◽  
Christophe Chesneau ◽  
Jamal Abdul Nasir ◽  
...  

A new four-parameter lifetime distribution (called the Topp Leone Weibull-Lomax distribution) is proposed in this paper. Different mathematical properties of the proposed distribution were studied which include quantile function, ordinary and incomplete moments, probability weighted moment, conditional moments, order statistics, stochastic ordering, and stress-strength reliability parameter. The regression model and the residual analysis for the proposed model were also carried out. The model parameters were estimated by using the maximum likelihood criterion and the behaviour of these estimated parameters were examined by conducting a simulation study. The importance and flexibility of the proposed distribution have been proved empirically by using four separate data sets.


Sign in / Sign up

Export Citation Format

Share Document