scholarly journals Performance Analysis and Optimization of a Cooperative Transmission Protocol in NOMA-Assisted Cognitive Radio Networks with Discrete Energy Harvesting

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 785
Author(s):  
Hui Wang ◽  
Ronghua Shi ◽  
Kun Tang ◽  
Jian Dong ◽  
Shaowei Liao

In this paper, we propose a spectrum-sharing protocol for a cooperative cognitive radio network based on non-orthogonal multiple access technology, where the base station (BS) transmits the superimposed signal to the primary user and secondary user with/without the assistance of a relay station (RS) by adopting the decode-and-forward technique. RS performs discrete-time energy harvesting for opportunistically cooperative transmission. If the RS harvests sufficient energy, the system performs cooperative transmission; otherwise, the system performs direct transmission. Moreover, the outage probabilities and outage capacities of both primary and secondary systems are analyzed, and the corresponding closed-form expressions are derived. In addition, one optimization problem is formulated, where our objective is to maximize the energy efficiency of the secondary system while ensuring that of the primary system exceeds or equals a threshold value. A joint optimization algorithm of power allocation at BS and RS is considered to solve the optimization problem and to realize a mutual improvement in the performance of energy efficiency for both the primary and secondary systems. The simulation results demonstrate the validity of the analysis results and prove that the proposed transmission scheme has a higher energy efficiency than the direct transmission scheme and the transmission scheme with simultaneous wireless information and power transfer technology.

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2295 ◽  
Author(s):  
Tran Hoan ◽  
Hiep Vu-Van ◽  
Insoo Koo

The full-duplex transmission protocol has been widely investigated in the literature in order to improve radio spectrum usage efficiency. Unfortunately, due to the effect of imperfect self-interference suppression, the change in transmission power and path loss of non-line-of-sight fading channels will strongly affect performance of full-duplex transmission mode. This entails that the full-duplex transmission protocol is not always a better selection compared to the traditional half-duplex transmission protocol. Considering solar energy-harvesting-powered cognitive radio networks (CRNs), we investigate a joint full-duplex/half-duplex transmission switching scheduling and transmission power allocation in which we utilize the advantages of both half-duplex and full-duplex transmission modes for maximizing the long-term throughput of cognitive radio networks. First, we formulate the transmission rate of half-duplex and full-duplex links for fading channels between cognitive user and base station in which the channel gain is assumed to follow an exponential distribution. Afterward, by considering the availability probability of the primary channel, the limitation of the energy-harvesting capacity of the cognitive user, and the transmission capacity of half-duplex and full-duplex links, we describe the problem in terms of long-term expected throughput. The problem is then solved by adopting the partially observable Markov decision process framework to find the optimal transmission policy for the transmission pair between cognitive user and base station in order to maximize the long-term expected throughput. The optimal policy consists of either the half-duplex or the full-duplex transmission protocols as well as the corresponding amount of transmission energy in each time slot. In addition, to reduce the complexity in formulation and calculation, we also apply the actor–critic-based learning method to solve the considered problem. Finally, the performance of the proposed scheme was evaluated by comparing it with a conventional scheme in which the context of energy harvesting and long-term throughput is not considered.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3294 ◽  
Author(s):  
Shidang Li ◽  
Chunguo Li ◽  
Weiqiang Tan ◽  
Baofeng Ji ◽  
Luxi Yang

Vehicle to everything (V2X) has been deemed a promising technology due to its potential to achieve traffic safety and efficiency. This paper considers a V2X downlink system with a simultaneous wireless information and power transfer (SWIPT) system where the base station not only conveys data and energy to two types of wireless vehicular receivers, such as one hybrid power-splitting vehicular receiver, and multiple energy vehicular receivers, but also prevents information from being intercepted by the potential eavesdroppers (idle energy vehicular receivers). Both the base station and the energy vehicular receivers are equipped with multiple antennas, whereas the information vehicular receiver is equipped with a single antenna. In particular, the imperfect channel state information (CSI) and the practical nonlinear energy harvesting (EH) model are taken into account. The non-convex optimization problem is formulated to maximize the minimum harvested energy power among the energy vehicular receivers satisfying the lowest harvested energy power threshold at the information vehicular receiver and secure vehicular communication requirements. In light of the intractability of the optimization problem, the semidefinite relaxation (SDR) technique and variable substitutions are applied, and the optimal solution is proven to be tight. A number of results demonstrate that the proposed robust secure beamforming scheme has better performance than other schemes.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 329 ◽  
Author(s):  
Yibo Zhang ◽  
Xiaoxiang Wang ◽  
Dongyu Wang ◽  
Yufang Zhang ◽  
Yanwen Lan

This paper studies a multi-user network model based on sparse code multiple access (SCMA), where both unicast and multicast services are considered. In the direct transmission scheme, the communication between the base station (BS) and the users is completed with one stage, in which the relay is inexistent. In the two-stage cooperative transmission scheme, any number of relays are placed to improve the reliability of wireless communication system. The BS broadcasts the requested message to users and relays in the first stage, and the successful relays forward the message to unsuccessful users in the second stage. To characterize the performance of these two schemes, we derive the exact and approximate expressions of average outage probability. Furthermore, to take full advantage of the cooperative diversity, an optimal power allocation and relay location strategy in the high signal-to-noise ratio (SNR) regime is studied. The outage probability reaches the minimum value when the first stage occupies half of the total energy consumed. Simulation and analysis results are presented to demonstrate the performance of these two schemes. The results show that the two-stage cooperative scheme effectively reduce the average outage probability in SCMA network, especially in the high SNR region.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Lanhua Xiang ◽  
Hongbin Chen ◽  
Feng Zhao

In order to meet the demand of explosive data traffic, ultradense base station (BS) deployment in heterogeneous networks (HetNets) as a key technique in 5G has been proposed. However, with the increment of BSs, the total energy consumption will also increase. So, the energy efficiency (EE) has become a focal point in ultradense HetNets. In this paper, we take the area spectral efficiency (ASE) into consideration and focus on the tradeoff between the ASE and EE in an ultradense HetNet. The distributions of BSs in the two-tier ultradense HetNet are modeled by two independent Poisson point processes (PPPs) and the expressions of ASE and EE are derived by using the stochastic geometry tool. The tradeoff between the ASE and EE is formulated as a constrained optimization problem in which the EE is maximized under the ASE constraint, through optimizing the BS densities. It is difficult to solve the optimization problem analytically, because the closed-form expressions of ASE and EE are not easily obtained. Therefore, simulations are conducted to find optimal BS densities.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ni ◽  
Xinyu Da ◽  
Hang Hu ◽  
Miao Zhang

In this work, we investigate the secrecy energy efficiency (SEE) optimization problem for a multiple-input single-output (MISO) cognitive radio (CR) network based on a practical nonlinear energy-harvesting (EH) model. In particular, the energy receiver (ER) is assumed to be a potential eavesdropper due to the open architecture of a CR network with simultaneous wireless information and power transfer (SWIPT), such that the confidential message is prone to be intercepted in wireless communications. The aim of this work is to provide a secure transmit beamforming design while satisfying the minimum secrecy rate target, the minimum EH requirement, and the maximum interference leakage power to primary user (PU). In addition, we consider that all the channel state information (CSI) is perfectly known at the secondary transmitter (ST). We formulate this beamforming design as a SEE maximization problem; however, the original optimization problem is not convex due to the nonlinear fractional objective function. To solve it, a novel iterative algorithm is proposed to obtain the globally optimal solution of the primal problem by using the nonlinear fractional programming and sequential programming. Finally, numerical simulation results are presented to validate the performance of the proposed scheme.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yulun Cheng ◽  
Longxiang Yang

This paper addresses the energy-efficient transmission for the scenario of cooperative wireless sensor networks with partial energy harvesting (EH) nodes. A new EH decoding-recoding policy is proposed by regarding the EH constraints and the characteristics of random network coding. We develop an energy efficiency model to investigate the tradeoff mechanism between the saved energy and the waiting time of the EH node, through which the corresponding parameters in the policy are also optimized. Moreover, we propose a novel transmission protocol by embedding the considered policy in the opportunistic reception algorithm. The decoding failure probability is then derived to examine its transmission reliability. The obtained theoretical and simulation results indicate that the proposed protocol achieves superiority in energy efficiency; meanwhile, it can also provide similar transmission reliability under specific conditions, as compared to the conventional algorithms in the two-hop model.


Sign in / Sign up

Export Citation Format

Share Document