scholarly journals Algorithmic Information Distortions in Node-Aligned and Node-Unaligned Multidimensional Networks

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 835
Author(s):  
Felipe S. Abrahão ◽  
Klaus Wehmuth ◽  
Hector Zenil ◽  
Artur Ziviani

In this article, we investigate limitations of importing methods based on algorithmic information theory from monoplex networks into multidimensional networks (such as multilayer networks) that have a large number of extra dimensions (i.e., aspects). In the worst-case scenario, it has been previously shown that node-aligned multidimensional networks with non-uniform multidimensional spaces can display exponentially larger algorithmic information (or lossless compressibility) distortions with respect to their isomorphic monoplex networks, so that these distortions grow at least linearly with the number of extra dimensions. In the present article, we demonstrate that node-unaligned multidimensional networks, either with uniform or non-uniform multidimensional spaces, can also display exponentially larger algorithmic information distortions with respect to their isomorphic monoplex networks. However, unlike the node-aligned non-uniform case studied in previous work, these distortions in the node-unaligned case grow at least exponentially with the number of extra dimensions. On the other hand, for node-aligned multidimensional networks with uniform multidimensional spaces, we demonstrate that any distortion can only grow up to a logarithmic order of the number of extra dimensions. Thus, these results establish that isomorphisms between finite multidimensional networks and finite monoplex networks do not preserve algorithmic information in general and highlight that the algorithmic information of the multidimensional space itself needs to be taken into account in multidimensional network complexity analysis.

Author(s):  
Felipe S. Abrahão ◽  
Klaus Wehmuth ◽  
Hector Zenil ◽  
Artur Ziviani

In this article, we investigate limitations of importing methods based on algorithmic information theory from monoplex networks into multidimensional networks (such as multilayer networks) that have a large number of extra dimensions (i.e., aspects). In the worst-case scenario, it has been previously shown that node-aligned multidimensional networks with non-uniform multidimensional spaces can display exponentially larger algorithmic information (or lossless compressibility) distortions with respect to their isomorphic monoplex networks, so that these distortions grow at least linearly with the number of extra dimensions. In the present article, we demonstrate that node-unaligned multidimensional networks, either with uniform or non-uniform multidimensional spaces, can also display exponentially larger algorithmic information distortions with respect to their isomorphic monoplex networks. However, unlike the node-aligned non-uniform case studied in previous work, these distortions in the node-unaligned case grow at least exponentially with the number of extra dimensions. On the other hand, for node-aligned multidimensional networks with uniform multidimensional spaces, we demonstrate that any distortion can only grow up to a logarithmic order of the number of extra dimensions. Thus, these results establish that isomorphisms between finite multidimensional networks and finite monoplex networks do not preserve algorithmic information in general and highlight that the algorithmic information of the multidimensional space itself needs to be taken into account in multidimensional network complexity analysis.


Author(s):  
Felipe S. Abrahão ◽  
Klaus Wehmuth ◽  
Hector Zenil ◽  
Artur Ziviani

In this article, we investigate limitations of importing methods based on algorithmic information theory from monoplex networks into multidimensional networks (such as multilayer networks) that have a large number of extra dimensions (i.e., aspects). In the worst-case scenario, it has been previously shown that node-aligned multidimensional networks with non-uniform multidimensional spaces can display exponentially larger algorithmic information (or lossless compressibility) distortions with respect to their isomorphic monoplex networks, so that these distortions grow at least linearly with the number of extra dimensions. We demonstrate that node-unaligned multidimensional networks, either with uniform or non-uniform multidimensional spaces, can also display exponentially larger algorithmic information distortions with respect to their isomorphic monoplex networks. However, unlike the previous node-aligned non-uniform case, these distortions grow at least exponentially with the number of extra dimensions. On the other hand, for node-aligned multidimensional networks with uniform multidimensional spaces, we demonstrate that any distortion can only grow up to a logarithmic order of the number of extra dimensions. Thus, these results establish that isomorphisms between finite multidimensional networks and finite monoplex networks do not preserve algorithmic information in general and highlight that the algorithmic information of the multidimensional space itself needs to be taken into account in multidimensional network complexity analysis.


2010 ◽  
Vol 21 (03) ◽  
pp. 321-327 ◽  
Author(s):  
YEN-WU TI ◽  
CHING-LUEH CHANG ◽  
YUH-DAUH LYUU ◽  
ALEXANDER SHEN

A bit string is random (in the sense of algorithmic information theory) if it is incompressible, i.e., its Kolmogorov complexity is close to its length. Two random strings are independent if knowing one of them does not simplify the description of the other, i.e., the conditional complexity of each string (using the other as a condition) is close to its length. We may define independence of a k-tuple of strings in the same way. In this paper we address the following question: what is that maximal cardinality of a set of n-bit strings if any k elements of this set are independent (up to a certain constant)? Lower and upper bounds that match each other (with logarithmic precision) are provided.


1998 ◽  
Vol 11 (3) ◽  
pp. 377-390
Author(s):  
Pierre Le Gall

Using a tandem queue model we evaluate the local “endogenous” (= internal) queueing delay in single server and multiserver queueing networks. The new concept of the apparent overall upstream queueing delay(as perceived by the downstream network) allows us to analyze the distribution of this local queue by interpolating between the distributions of the tandem queue (generated by a concentration tree) and the isolated G/G/squeue. The interpolation coefficients depend on the proportion of “premature departures”, typically interfering in the upstream stage and leaving the considered path without being offered to the considered local queue. On the other hand, local “exogenous” arrivals (from outside the network) require the introduction of the “interference delay” concept. Finally, in the case of single server queueing networks, we stress the need to extend the capacities of the buffers, by considering the “worst case” scenario and by using an “equivalent tandem queue” model.


2008 ◽  
Author(s):  
Sonia Savelli ◽  
Susan Joslyn ◽  
Limor Nadav-Greenberg ◽  
Queena Chen

Author(s):  
D. V. Vaniukova ◽  
◽  
P. A. Kutsenkov ◽  

The research expedition of the Institute of Oriental studies of the Russian Academy of Sciences has been working in Mali since 2015. Since 2017, it has been attended by employees of the State Museum of the East. The task of the expedition is to study the transformation of traditional Dogon culture in the context of globalization, as well as to collect ethnographic information (life, customs, features of the traditional social and political structure); to collect oral historical legends; to study the history, existence, and transformation of artistic tradition in the villages of the Dogon Country in modern conditions; collecting items of Ethnography and art to add to the collection of the African collection of the. Peter the Great Museum (Kunstkamera, Saint Petersburg) and the State Museum of Oriental Arts (Moscow). The plan of the expedition in January 2020 included additional items, namely, the study of the functioning of the antique market in Mali (the “path” of things from villages to cities, which is important for attributing works of traditional art). The geography of our research was significantly expanded to the regions of Sikasso and Koulikoro in Mali, as well as to the city of Bobo-Dioulasso and its surroundings in Burkina Faso, which is related to the study of migrations to the Bandiagara Highlands. In addition, the plan of the expedition included organization of a photo exhibition in the Museum of the village of Endé and some educational projects. Unfortunately, after the mass murder in March 2019 in the village of Ogossogou-Pel, where more than one hundred and seventy people were killed, events in the Dogon Country began to develop in the worst-case scenario: The incessant provocations after that revived the old feud between the Pel (Fulbe) pastoralists and the Dogon farmers. So far, this hostility and mutual distrust has not yet developed into a full-scale ethnic conflict, but, unfortunately, such a development now seems quite likely.


2020 ◽  
Author(s):  
Ahmed Abdelmoaty ◽  
Wessam Mesbah ◽  
Mohammad A. M. Abdel-Aal ◽  
Ali T. Alawami

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination between the wind-thermal generators and the EVs in a virtual<br>power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy<br>prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the e?effectiveness of the proposed model in terms of the VPPO's profit. A comparison between the proposed model and the scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the production and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from<br>the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life scenarios.<br>


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 491
Author(s):  
Alina E. Kozhukhova ◽  
Stephanus P. du Preez ◽  
Aleksander A. Malakhov ◽  
Dmitri G. Bessarabov

In this study, a Pt/anodized aluminum oxide (AAO) catalyst was prepared by the anodization of an Al alloy (Al6082, 97.5% Al), followed by the incorporation of Pt via an incipient wet impregnation method. Then, the Pt/AAO catalyst was evaluated for autocatalytic hydrogen recombination. The Pt/AAO catalyst’s morphological characteristics were determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average Pt particle size was determined to be 3.0 ± 0.6 nm. This Pt/AAO catalyst was tested for the combustion of lean hydrogen (0.5–4 vol% H2 in the air) in a recombiner section testing station. The thermal distribution throughout the catalytic surface was investigated at 3 vol% hydrogen (H2) using an infrared camera. The Al/AAO system had a high thermal conductivity, which prevents the formation of hotspots (areas where localized surface temperature is higher than an average temperature across the entire catalyst surface). In turn, the Pt stability was enhanced during catalytic hydrogen combustion (CHC). A temperature gradient over 70 mm of the Pt/AAO catalyst was 23 °C and 42 °C for catalysts with uniform and nonuniform (worst-case scenario) Pt distributions. The commercial computational fluid dynamics (CFD) code STAR-CCM+ was used to compare the experimentally observed and numerically simulated thermal distribution of the Pt/AAO catalyst. The effect of the initial H2 volume fraction on the combustion temperature and conversion of H2 was investigated. The activation energy for CHC on the Pt/AAO catalyst was 19.2 kJ/mol. Prolonged CHC was performed to assess the durability (reactive metal stability and catalytic activity) of the Pt/AAO catalyst. A stable combustion temperature of 162.8 ± 8.0 °C was maintained over 530 h of CHC. To confirm that Pt aggregation was avoided, the Pt particle size and distribution were determined by TEM before and after prolonged CHC.


Sports ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 76
Author(s):  
Dylan Mernagh ◽  
Anthony Weldon ◽  
Josh Wass ◽  
John Phillips ◽  
Nimai Parmar ◽  
...  

This is the first study to report the whole match, ball-in-play (BiP), ball-out-of-play (BoP), and Max BiP (worst case scenario phases of play) demands of professional soccer players competing in the English Championship. Effective playing time per soccer game is typically <60 min. When the ball is out of play, players spend time repositioning themselves, which is likely less physically demanding. Consequently, reporting whole match demands may under-report the physical requirements of soccer players. Twenty professional soccer players, categorized by position (defenders, midfielders, and forwards), participated in this study. A repeated measures design was used to collect Global Positioning System (GPS) data over eight professional soccer matches in the English Championship. Data were divided into whole match and BiP data, and BiP data were further sub-divided into different time points (30–60 s, 60–90 s, and >90 s), providing peak match demands. Whole match demands recorded were compared to BiP and Max BiP, with BiP data excluding all match stoppages, providing a more precise analysis of match demands. Whole match metrics were significantly lower than BiP metrics (p < 0.05), and Max BiP for 30–60 s was significantly higher than periods between 60–90 s and >90 s. No significant differences were found between positions. BiP analysis allows for a more accurate representation of the game and physical demands imposed on professional soccer players. Through having a clearer understanding of maximum game demands in professional soccer, practitioners can design more specific training methods to better prepare players for worst case scenario passages of play.


Sign in / Sign up

Export Citation Format

Share Document