scholarly journals A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1430
Author(s):  
Guisheng Chen ◽  
Zhanshan Li

Market basket prediction, which is the basis of product recommendation systems, is the concept of predicting what customers will buy in the next shopping basket based on analysis of their historical shopping records. Although product recommendation systems develop rapidly and have good performance in practice, state-of-the-art algorithms still have plenty of room for improvement. In this paper, we propose a new algorithm combining pattern prediction and preference prediction. In pattern prediction, sequential rules, periodic patterns and association rules are mined and probability models are established based on their statistical characteristics, e.g., the distribution of periods of a periodic pattern, to make a more precise prediction. Products that have a higher probability will have priority to be recommended. If the quantity of recommended products is insufficient, then we make a preference prediction to select more products. Preference prediction is based on the frequency and tendency of products that appear in customers’ individual shopping records, where tendency is a new concept to reflect the evolution of customers’ shopping preferences. Experiments show that our algorithm outperforms those of the baseline methods and state-of-the-art methods on three of four real-world transaction sequence datasets.

2021 ◽  
Vol 13 (2) ◽  
pp. 47-53
Author(s):  
M. Abubakar ◽  
K. Umar

Product recommendation systems are information filtering systems that uses ratings and predictions to make new product suggestions. There are many product recommendation system techniques in existence, these include collaborative filtering, content based filtering, knowledge based filtering, utility based filtering and demographic based filtering. Collaborative filtering techniques is known to be the most popular product recommendation system technique. It utilizes user’s previous product ratings to make new product suggestions. However collaborative filtering have some weaknesses, which include cold start, grey sheep issue, synonyms issue. However the major weakness of collaborative filtering approaches is cold user problem. Cold user problem is the failure of product recommendation systems to make product suggestions for new users. Literature investigation had shown that cold user problem could be effectively addressed using active learning technique of administering personalized questionnaire. Unfortunately, the result of personalized questionnaire technique could contain some user preference uncertainties where the product database is too large (as in Amazon). This research work addresses the weakness of personalized questionnaire technique by applying uncertainty reduction strategy to improve the result obtained from administering personalized questionnaire. In our experimental design we perform four different experiments; Personalized questionnaire approach of solving user based coldstart was implemented using Movielens dataset of 1M size, Personalized questionnaire approach of solving user based cold start was implemented using Movielens dataset of 10M size, Personalized questionnaire with uncertainty reduction was implemented using Movielens dataset of 1M size, and also Personalized  questionnaire with uncertainty reduction was implemented using Movielens dataset of 10M size. The experimental result shows RMSE, Precision and Recall improvement of 0.21, 0.17 and 0.18 respectively in 1M dataset and 0.17, 0.14 and 0.20 in 10M dataset respectively over personalized questionnaire.


2014 ◽  
Vol 23 (3) ◽  
pp. 277-291 ◽  
Author(s):  
Jhimli Adhikari

AbstractA large class of problems deals with temporal data. Identifying temporal patterns in these datasets is a natural as well as an important task. In recent times, researchers have reported an algorithm for finding calendar-based periodic pattern in time-stamped data without considering the purchased quantities of the items. However, most of the real-life databases are nonbinary, and therefore, exploring various calendar-based patterns (yearly, monthly, weekly, daily) with their purchased quantities may discover information useful to improve the quality of business decisions. In this article, a technique is proposed to extract calendar-based periodic patterns from nonbinary transactions. In this connection, the concept of certainty factor has been introduced by incorporating transaction frequency for overlapped intervals. Algorithms have been designed to mine frequent itemsets along with intervals and quantity. In addition to that, we have designed an algorithm to find the periodicity of the pattern. The algorithm is tested with real-life data, and the results are given.


In Rayleigh-Bénard convection, the spatially uniform motionless state of a fluid loses stability as the Rayleigh number is increased beyond a critical value. In the simplest case of convection in a pure Boussinesq fluid, the instability is a symmetry-breaking steady-state bifurcation that leads to the formation of spatially periodic patterns. However, in many double-diffusive convection systems the heat-conduction solution actually loses stability via Hopf bifurcation. These hydrodynamic systems provide motivation for the present study of spatiotemporally periodic pattern formation in Euclidean equivariant systems. We call such patterns planforms . We classify, according to spatio-temporal symmetries and spatial periodicity, many of the time-periodic solutions that may be obtained through equivariant Hopf bifurcation from a group-invariant equilibrium. Instead of focusing on plan- forms periodic with respect to a specified planar lattice, as has been done in previous investigations, we consider all planforms that are spatially periodic with respect to some planar lattice. Our classification results rely only on the existence of Hopf bifurcation and planar Euclidean symmetry and not on the particular dif­ferential equation.


Author(s):  
Ali Zonoozi ◽  
Jung-jae Kim ◽  
Xiao-Li Li ◽  
Gao Cong

Time-series forecasting in geo-spatial domains has important applications, including urban planning, traffic management and behavioral analysis. We observed recurring periodic patterns in some spatio-temporal data, which were not considered explicitly by previous non-linear works. To address this lack, we propose novel `Periodic-CRN' (PCRN) method, which adapts convolutional recurrent network (CRN) to accurately capture spatial and temporal correlations, learns and incorporates explicit periodic representations, and can be optimized with multi-step ahead prediction. We show that PCRN consistently outperforms the state-of-the-art methods for crowd density prediction across two taxi datasets from Beijing and Singapore.


Author(s):  
Gaode Chen ◽  
Xinghua Zhang ◽  
Yanyan Zhao ◽  
Cong Xue ◽  
Ji Xiang

Sequential recommendation systems alleviate the problem of information overload, and have attracted increasing attention in the literature. Most prior works usually obtain an overall representation based on the user’s behavior sequence, which can not sufficiently reflect the multiple interests of the user. To this end, we propose a novel method called PIMI to mitigate this issue. PIMI can model the user’s multi-interest representation effectively by considering both the periodicity and interactivity in the item sequence. Specifically, we design a periodicity-aware module to utilize the time interval information between user’s behaviors. Meanwhile, an ingenious graph is proposed to enhance the interactivity between items in user’s behavior sequence, which can capture both global and local item features. Finally, a multi-interest extraction module is applied to describe user’s multiple interests based on the obtained item representation. Extensive experiments on two real-world datasets Amazon and Taobao show that PIMI outperforms state-of-the-art methods consistently.


2020 ◽  
Author(s):  
Yiqin Luo ◽  
Yanpeng Sun ◽  
Liang Chang ◽  
Tianlong Gu ◽  
Chenzhong Bin ◽  
...  

Abstract In context-aware recommendation systems, most existing methods encode users’ preferences by mapping item and category information into the same space, which is just a stack of information. The item and category information contained in the interaction behaviours is not fully utilized. Moreover, since users’ preferences for a candidate item are influenced by the changes in temporal and historical behaviours, it is unreasonable to predict correlations between users and candidates by using users’ fixed features. A fine-grained and coarse-grained information based framework proposed in our paper which considers multi-granularity information of users’ historical behaviours. First, a parallel structure is provided to mine users’ preference information under different granularities. Then, self-attention and attention mechanisms are used to capture the dynamic preferences. Experiment results on two publicly available datasets show that our framework outperforms state-of-the-art methods across the calculated evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document