scholarly journals Exploring Periodicity and Interactivity in Multi-Interest Framework for Sequential Recommendation

Author(s):  
Gaode Chen ◽  
Xinghua Zhang ◽  
Yanyan Zhao ◽  
Cong Xue ◽  
Ji Xiang

Sequential recommendation systems alleviate the problem of information overload, and have attracted increasing attention in the literature. Most prior works usually obtain an overall representation based on the user’s behavior sequence, which can not sufficiently reflect the multiple interests of the user. To this end, we propose a novel method called PIMI to mitigate this issue. PIMI can model the user’s multi-interest representation effectively by considering both the periodicity and interactivity in the item sequence. Specifically, we design a periodicity-aware module to utilize the time interval information between user’s behaviors. Meanwhile, an ingenious graph is proposed to enhance the interactivity between items in user’s behavior sequence, which can capture both global and local item features. Finally, a multi-interest extraction module is applied to describe user’s multiple interests based on the obtained item representation. Extensive experiments on two real-world datasets Amazon and Taobao show that PIMI outperforms state-of-the-art methods consistently.

Author(s):  
Jianjun Wu ◽  
Ying Sha ◽  
Bo Jiang ◽  
Jianlong Tan

Structural representations of user social influence are critical for a variety of applications such as viral marketing and recommendation products. However, existing studies only focus on capturing and preserving the structure of relations, and ignore the diversity of influence relations patterns among users. To this end, we propose a deep structural influence learning model to learn social influence structure via mining rich features of each user, and fuse information from the aligned selfnetwork component for preserving global and local structure of the influence relations among users. Experiments on two real-world datasets demonstrate that the proposed model outperforms the state-of-the-art algorithms for learning rich representations in multi-label classification task.


Author(s):  
Anjing Luo ◽  
Pengpeng Zhao ◽  
Yanchi Liu ◽  
Fuzhen Zhuang ◽  
Deqing Wang ◽  
...  

Session-based recommendation becomes a research hotspot for its ability to make recommendations for anonymous users. However, existing session-based methods have the following limitations: (1) They either lack the capability to learn complex dependencies or focus mostly on the current session without explicitly considering collaborative information. (2) They assume that the representation of an item is static and fixed for all users at each time step. We argue that even the same item can be represented differently for different users at the same time step. To this end, we propose a novel solution, Collaborative Self-Attention Network (CoSAN) for session-based recommendation, to learn the session representation and predict the intent of the current session by investigating neighborhood sessions. Specially, we first devise a collaborative item representation by aggregating the embedding of neighborhood sessions retrieved according to each item in the current session. Then, we apply self-attention to learn long-range dependencies between collaborative items and generate collaborative session representation. Finally, each session is represented by concatenating the collaborative session representation and the embedding of the current session. Extensive experiments on two real-world datasets show that CoSAN constantly outperforms state-of-the-art methods.


Author(s):  
Yun-Peng Liu ◽  
Ning Xu ◽  
Yu Zhang ◽  
Xin Geng

The performances of deep neural networks (DNNs) crucially rely on the quality of labeling. In some situations, labels are easily corrupted, and therefore some labels become noisy labels. Thus, designing algorithms that deal with noisy labels is of great importance for learning robust DNNs. However, it is difficult to distinguish between clean labels and noisy labels, which becomes the bottleneck of many methods. To address the problem, this paper proposes a novel method named Label Distribution based Confidence Estimation (LDCE). LDCE estimates the confidence of the observed labels based on label distribution. Then, the boundary between clean labels and noisy labels becomes clear according to confidence scores. To verify the effectiveness of the method, LDCE is combined with the existing learning algorithm to train robust DNNs. Experiments on both synthetic and real-world datasets substantiate the superiority of the proposed algorithm against state-of-the-art methods.


2020 ◽  
Vol 34 (01) ◽  
pp. 19-26 ◽  
Author(s):  
Chong Chen ◽  
Min Zhang ◽  
Yongfeng Zhang ◽  
Weizhi Ma ◽  
Yiqun Liu ◽  
...  

Recent studies on recommendation have largely focused on exploring state-of-the-art neural networks to improve the expressiveness of models, while typically apply the Negative Sampling (NS) strategy for efficient learning. Despite effectiveness, two important issues have not been well-considered in existing methods: 1) NS suffers from dramatic fluctuation, making sampling-based methods difficult to achieve the optimal ranking performance in practical applications; 2) although heterogeneous feedback (e.g., view, click, and purchase) is widespread in many online systems, most existing methods leverage only one primary type of user feedback such as purchase. In this work, we propose a novel non-sampling transfer learning solution, named Efficient Heterogeneous Collaborative Filtering (EHCF) for Top-N recommendation. It can not only model fine-grained user-item relations, but also efficiently learn model parameters from the whole heterogeneous data (including all unlabeled data) with a rather low time complexity. Extensive experiments on three real-world datasets show that EHCF significantly outperforms state-of-the-art recommendation methods in both traditional (single-behavior) and heterogeneous scenarios. Moreover, EHCF shows significant improvements in training efficiency, making it more applicable to real-world large-scale systems. Our implementation has been released 1 to facilitate further developments on efficient whole-data based neural methods.


2018 ◽  
Vol 29 (12) ◽  
pp. 1850119
Author(s):  
Jingming Zhang ◽  
Jianjun Cheng ◽  
Xiaosu Feng ◽  
Xiaoyun Chen

Identifying community structure in networks plays an important role in understanding the network structure and analyzing the network features. Many state-of-the-art algorithms have been proposed to identify the community structure in networks. In this paper, we propose a novel method based on closure extension; it performs in two steps. The first step uses the similarity closure or correlation closure to find the initial community structure. In the second step, we merge the initial communities using Modularity [Formula: see text]. The proposed method does not need any prior information such as the number or sizes of communities, and it is able to obtain the same resulting communities in multiple runs. Moreover, it is noteworthy that our method has low computational complexity because of considering only local information of network. Some real-world and synthetic graphs are used to test the performance of the proposed method. The results demonstrate that our method can detect deterministic and informative community structure in most cases.


Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


Author(s):  
Chengzhen Fu ◽  
Yan Zhang

Query-document semantic interactions are essential for the success of many cloze-style question answering models. Recently, researchers have proposed several attention-based methods to predict the answer by focusing on appropriate subparts of the context document. In this paper, we design a novel module to produce the query-aware context vector, named Multi-Space based Context Fusion (MSCF), with the following considerations: (1) interactions are applied across multiple latent semantic spaces; (2) attention is measured at bit level, not at token level. Moreover, we extend MSCF to the multi-hop architecture. This unified model is called Enhanced Attentive Reader (EA Reader). During the iterative inference process, the reader is equipped with a novel memory update rule and maintains the understanding of documents through read, update and write operations. We conduct extensive experiments on four real-world datasets. Our results demonstrate that EA Reader outperforms state-of-the-art models.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1689
Author(s):  
Lan Huang ◽  
Shaoqing Jiao ◽  
Sen Yang ◽  
Shuangquan Zhang ◽  
Xiaopeng Zhu ◽  
...  

Long noncoding RNA (lncRNA) plays a crucial role in many critical biological processes and participates in complex human diseases through interaction with proteins. Considering that identifying lncRNA–protein interactions through experimental methods is expensive and time-consuming, we propose a novel method based on deep learning that combines raw sequence composition features and hand-designed features, called LGFC-CNN, to predict lncRNA–protein interactions. The two sequence preprocessing methods and CNN modules (GloCNN and LocCNN) are utilized to extract the raw sequence global and local features. Meanwhile, we select hand-designed features by comparing the predictive effect of different lncRNA and protein features combinations. Furthermore, we obtain the structure features and unifying the dimensions through Fourier transform. In the end, the four types of features are integrated to comprehensively predict the lncRNA–protein interactions. Compared with other state-of-the-art methods on three lncRNA–protein interaction datasets, LGFC-CNN achieves the best performance with an accuracy of 94.14%, on RPI21850; an accuracy of 92.94%, on RPI7317; and an accuracy of 98.19% on RPI1847. The results show that our LGFC-CNN can effectively predict the lncRNA–protein interactions by combining raw sequence composition features and hand-designed features.


2020 ◽  
Vol 34 (01) ◽  
pp. 214-221 ◽  
Author(s):  
Ke Sun ◽  
Tieyun Qian ◽  
Tong Chen ◽  
Yile Liang ◽  
Quoc Viet Hung Nguyen ◽  
...  

Point-of-Interest (POI) recommendation has been a trending research topic as it generates personalized suggestions on facilities for users from a large number of candidate venues. Since users' check-in records can be viewed as a long sequence, methods based on recurrent neural networks (RNNs) have recently shown promising applicability for this task. However, existing RNN-based methods either neglect users' long-term preferences or overlook the geographical relations among recently visited POIs when modeling users' short-term preferences, thus making the recommendation results unreliable. To address the above limitations, we propose a novel method named Long- and Short-Term Preference Modeling (LSTPM) for next-POI recommendation. In particular, the proposed model consists of a nonlocal network for long-term preference modeling and a geo-dilated RNN for short-term preference learning. Extensive experiments on two real-world datasets demonstrate that our model yields significant improvements over the state-of-the-art methods.


Author(s):  
Lei Feng ◽  
Bo An

Partial label learning deals with the problem where each training instance is assigned a set of candidate labels, only one of which is correct. This paper provides the first attempt to leverage the idea of self-training for dealing with partially labeled examples. Specifically, we propose a unified formulation with proper constraints to train the desired model and perform pseudo-labeling jointly. For pseudo-labeling, unlike traditional self-training that manually differentiates the ground-truth label with enough high confidence, we introduce the maximum infinity norm regularization on the modeling outputs to automatically achieve this consideratum, which results in a convex-concave optimization problem. We show that optimizing this convex-concave problem is equivalent to solving a set of quadratic programming (QP) problems. By proposing an upper-bound surrogate objective function, we turn to solving only one QP problem for improving the optimization efficiency. Extensive experiments on synthesized and real-world datasets demonstrate that the proposed approach significantly outperforms the state-of-the-art partial label learning approaches.


Sign in / Sign up

Export Citation Format

Share Document