Considering Fine-Grained and Coarse-Grained Information for Context-Aware Recommendations

2020 ◽  
Author(s):  
Yiqin Luo ◽  
Yanpeng Sun ◽  
Liang Chang ◽  
Tianlong Gu ◽  
Chenzhong Bin ◽  
...  

Abstract In context-aware recommendation systems, most existing methods encode users’ preferences by mapping item and category information into the same space, which is just a stack of information. The item and category information contained in the interaction behaviours is not fully utilized. Moreover, since users’ preferences for a candidate item are influenced by the changes in temporal and historical behaviours, it is unreasonable to predict correlations between users and candidates by using users’ fixed features. A fine-grained and coarse-grained information based framework proposed in our paper which considers multi-granularity information of users’ historical behaviours. First, a parallel structure is provided to mine users’ preference information under different granularities. Then, self-attention and attention mechanisms are used to capture the dynamic preferences. Experiment results on two publicly available datasets show that our framework outperforms state-of-the-art methods across the calculated evaluation metrics.

2021 ◽  
Vol 9 ◽  
pp. 929-944
Author(s):  
Omar Khattab ◽  
Christopher Potts ◽  
Matei Zaharia

Abstract Systems for Open-Domain Question Answering (OpenQA) generally depend on a retriever for finding candidate passages in a large corpus and a reader for extracting answers from those passages. In much recent work, the retriever is a learned component that uses coarse-grained vector representations of questions and passages. We argue that this modeling choice is insufficiently expressive for dealing with the complexity of natural language questions. To address this, we define ColBERT-QA, which adapts the scalable neural retrieval model ColBERT to OpenQA. ColBERT creates fine-grained interactions between questions and passages. We propose an efficient weak supervision strategy that iteratively uses ColBERT to create its own training data. This greatly improves OpenQA retrieval on Natural Questions, SQuAD, and TriviaQA, and the resulting system attains state-of-the-art extractive OpenQA performance on all three datasets.


Author(s):  
Dai Shi ◽  
Dan Tao ◽  
Jiangtao Wang ◽  
Muyan Yao ◽  
Zhibo Wang ◽  
...  

Pattern lock has been widely used in smartphones as a simple and effective authentication mechanism, which however is shown to be vulnerable to various attacks. In this paper, we design a novel authentication system for more secure pattern unlocking on smartphones. The basic idea is to utilize various behavior information of the user during pattern unlocking as additional authentication fingerprints, so that even if the pattern password is leaked to an attacker, the system remains safe and protected. To accommodate a variety of user contexts by our system, a context-aware module is proposed to distinguish any of such contexts (e.g., body postures when drawing the pattern) and use it to guide the authentication. Moreover, we design a polyline weighted strategy with overlapping based on the consistency of pattern lock, which analyzes the behavior information of the user during the unlock process in a fine-grained manner and takes an overall consideration the results of different polylines. Based on 14,850 samples collected from 77 participants, we have extensively evaluated the proposed system. The results demonstrate that it outperforms state-of-the-art implicit authentication based pattern lock approaches, and that each key module in our system is effective.


2021 ◽  
Vol 9 (1) ◽  
pp. 932-947
Author(s):  
Ms. Swati, Dr. Shalini Bhaskar Bajaj, Dr. Vivek Jaglan

We present an efficient locking scheme in a hierarchical data structure. The existing multi-granularity locking mechanism works on two extremes: fine-grained locking through which concurrency is being maximized, and coarse grained locking that is being applied to minimize the locking cost. Between the two extremes, there lies several pare to-optimal options that provide a trade-off between the concurrency that can be attained. In this work, we present a locking technique, Collaborative Granular Version Locking (CGVL) which selects an optimal locking combination to serve locking requests in a hierarchical structure. In CGVL a series of version is being maintained at each granular level which allows the simultaneous execution of read and write operation on the data item. Our study reveals that in order to achieve optimal performance the lock manager explore various locking options by converting certain non-supporting locking modes into supporting locking modes thereby improving the existing compatibility matrix of multiple granularity locking protocol. Our claim is being quantitatively validated by using a Java Sun JDK environment, which shows that our CGVL perform better compared to the state-of-the-art existing MGL methods. In particular, CGVL attains 20% reduction in execution time for the locking operation that are being carried out by considering, the following parameters: i) The number of threads ii) The number of locked object iii) The duration of critical section (CPU Cycles) which significantly supports the achievement of enhanced concurrency  in terms of  the number of concurrent read accesses.


2020 ◽  
Vol 34 (05) ◽  
pp. 9531-9538
Author(s):  
Jinghan Zhang ◽  
Yuxiao Ye ◽  
Yue Zhang ◽  
Likun Qiu ◽  
Bin Fu ◽  
...  

Detecting user intents from utterances is the basis of natural language understanding (NLU) task. To understand the meaning of utterances, some work focuses on fully representing utterances via semantic parsing in which annotation cost is labor-intentsive. While some researchers simply view this as intent classification or frequently asked questions (FAQs) retrieval, they do not leverage the shared utterances among different intents. We propose a simple and novel multi-point semantic representation framework with relatively low annotation cost to leverage the fine-grained factor information, decomposing queries into four factors, i.e., topic, predicate, object/condition, query type. Besides, we propose a compositional intent bi-attention model under multi-task learning with three kinds of attention mechanisms among queries, labels and factors, which jointly combines coarse-grained intent and fine-grained factor information. Extensive experiments show that our framework and model significantly outperform several state-of-the-art approaches with an improvement of 1.35%-2.47% in terms of accuracy.


Author(s):  
Shan Zhao ◽  
Minghao Hu ◽  
Zhiping Cai ◽  
Fang Liu

Joint extraction of entities and their relations benefits from the close interaction between named entities and their relation information. Therefore, how to effectively model such cross-modal interactions is critical for the final performance. Previous works have used simple methods such as label-feature concatenation to perform coarse-grained semantic fusion among cross-modal instances, but fail to capture fine-grained correlations over token and label spaces, resulting in insufficient interactions. In this paper, we propose a deep Cross-Modal Attention Network (CMAN) for joint entity and relation extraction. The network is carefully constructed by stacking multiple attention units in depth to fully model dense interactions over token-label spaces, in which two basic attention units are proposed to explicitly capture fine-grained correlations across different modalities (e.g., token-to-token and labelto-token). Experiment results on CoNLL04 dataset show that our model obtains state-of-the-art results by achieving 90.62% F1 on entity recognition and 72.97% F1 on relation classification. In ADE dataset, our model surpasses existing approaches by more than 1.9% F1 on relation classification. Extensive analyses further confirm the effectiveness of our approach.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Dan Zeng ◽  
Mao Li ◽  
Ni Jiang ◽  
Yiwen Ju ◽  
Hannah Schreiber ◽  
...  

Abstract Background 3D imaging, such as X-ray CT and MRI, has been widely deployed to study plant root structures. Many computational tools exist to extract coarse-grained features from 3D root images, such as total volume, root number and total root length. However, methods that can accurately and efficiently compute fine-grained root traits, such as root number and geometry at each hierarchy level, are still lacking. These traits would allow biologists to gain deeper insights into the root system architecture. Results We present TopoRoot, a high-throughput computational method that computes fine-grained architectural traits from 3D images of maize root crowns or root systems. These traits include the number, length, thickness, angle, tortuosity, and number of children for the roots at each level of the hierarchy. TopoRoot combines state-of-the-art algorithms in computer graphics, such as topological simplification and geometric skeletonization, with customized heuristics for robustly obtaining the branching structure and hierarchical information. TopoRoot is validated on both CT scans of excavated field-grown root crowns and simulated images of root systems, and in both cases, it was shown to improve the accuracy of traits over existing methods. TopoRoot runs within a few minutes on a desktop workstation for images at the resolution range of 400^3, with minimal need for human intervention in the form of setting three intensity thresholds per image. Conclusions TopoRoot improves the state-of-the-art methods in obtaining more accurate and comprehensive fine-grained traits of maize roots from 3D imaging. The automation and efficiency make TopoRoot suitable for batch processing on large numbers of root images. Our method is thus useful for phenomic studies aimed at finding the genetic basis behind root system architecture and the subsequent development of more productive crops.


Author(s):  
Wang Zheng-fang ◽  
Z.F. Wang

The main purpose of this study highlights on the evaluation of chloride SCC resistance of the material,duplex stainless steel,OOCr18Ni5Mo3Si2 (18-5Mo) and its welded coarse grained zone(CGZ).18-5Mo is a dual phases (A+F) stainless steel with yield strength:512N/mm2 .The proportion of secondary Phase(A phase) accounts for 30-35% of the total with fine grained and homogeneously distributed A and F phases(Fig.1).After being welded by a specific welding thermal cycle to the material,i.e. Tmax=1350°C and t8/5=20s,microstructure may change from fine grained morphology to coarse grained morphology and from homogeneously distributed of A phase to a concentration of A phase(Fig.2).Meanwhile,the proportion of A phase reduced from 35% to 5-10°o.For this reason it is known as welded coarse grained zone(CGZ).In association with difference of microstructure between base metal and welded CGZ,so chloride SCC resistance also differ from each other.Test procedures:Constant load tensile test(CLTT) were performed for recording Esce-t curve by which corrosion cracking growth can be described, tf,fractured time,can also be recorded by the test which is taken as a electrochemical behavior and mechanical property for SCC resistance evaluation. Test environment:143°C boiling 42%MgCl2 solution is used.Besides, micro analysis were conducted with light microscopy(LM),SEM,TEM,and Auger energy spectrum(AES) so as to reveal the correlation between the data generated by the CLTT results and micro analysis.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


2021 ◽  
pp. 1-16
Author(s):  
Ibtissem Gasmi ◽  
Mohamed Walid Azizi ◽  
Hassina Seridi-Bouchelaghem ◽  
Nabiha Azizi ◽  
Samir Brahim Belhaouari

Context-Aware Recommender System (CARS) suggests more relevant services by adapting them to the user’s specific context situation. Nevertheless, the use of many contextual factors can increase data sparsity while few context parameters fail to introduce the contextual effects in recommendations. Moreover, several CARSs are based on similarity algorithms, such as cosine and Pearson correlation coefficients. These methods are not very effective in the sparse datasets. This paper presents a context-aware model to integrate contextual factors into prediction process when there are insufficient co-rated items. The proposed algorithm uses Latent Dirichlet Allocation (LDA) to learn the latent interests of users from the textual descriptions of items. Then, it integrates both the explicit contextual factors and their degree of importance in the prediction process by introducing a weighting function. Indeed, the PSO algorithm is employed to learn and optimize weights of these features. The results on the Movielens 1 M dataset show that the proposed model can achieve an F-measure of 45.51% with precision as 68.64%. Furthermore, the enhancement in MAE and RMSE can respectively reach 41.63% and 39.69% compared with the state-of-the-art techniques.


Sign in / Sign up

Export Citation Format

Share Document