scholarly journals Characterization of Hand Gestures by a Smartphone-Based Optical Fiber Force Myography Sensor

2020 ◽  
Vol 2 (1) ◽  
pp. 46
Author(s):  
Matheus S. Rodrigues ◽  
Pedro M. Lazari ◽  
Marco C. P. Soares ◽  
Eric Fujiwara

In this paper, a smartphone-integrated, optical fiber sensor based on the force myography technique (FMG), which characterizes the stimuli of the forearm muscles in terms of mechanical pressures, was proposed for the identification of hand gestures. The device’s flashlight excites a pair of polymer optical fibers and the output signals are detected by the camera. The light intensity is modulated through wearable, force-driven microbending transducers placed in the forearm and the acquired optical signals are processed by an algorithm based on decision trees and residual error. The sensor provided a hit rate of 87% regarding four postures, yielding reliable performance with a simple, portable, and low-cost setup embedded on a smartphone.

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2776
Author(s):  
José A. Borda-Hernández ◽  
Claudia M. Serpa-Imbett ◽  
Hugo E. Hernandez Figueroa

This research introduces a numerical design of an air-core vortex polymer optical fiber in cyclic transparent optical polymer (CYTOP) that propagates 32 orbital angular momentum (OAM) modes, i.e., it may support up to 64 stable OAM-states considering left- and right-handed circular polarizations. This fiber seeks to be an alternative to increase the capacity of short-range optical communication systems multiplexed by modes, in agreement with the high demand of low-cost, insensitive-to-bending and easy-to-handle fibers similar to others optical fibers fabricated in polymers. This novel fiber possesses unique characteristics: a diameter of 50 µm that would allow a high mechanical compatibility with commercially available polymer optical fibers, a difference of effective index between neighbor OAM modes of around 10−4 over a bandwidth from 1 to 1.6 µm, propagation losses of approximately 15 × 10−3 dB/m for all OAM modes, and a very low dispersion for OAM higher order modes (±l = 16) of up to +2.5 ps/km-nm compared with OAM lower order modes at a telecom wavelength of 1.3 µm, in which the CYTOP exhibits a minimal attenuation. The spectra of mutual coupling coefficients between modes are computed considering small bends of up to 3 cm of radius and slight ellipticity in the ring of up to 5%. Results show lower-charge weights for higher order OAM modes.


1997 ◽  
Vol 503 ◽  
Author(s):  
F. Ansari

ABSTRACTIt is possible to monitor the initiation and progress of various mechanical or environmentally induced perturbations in concrete elements by way of fully integrated optical fiber sensors. Geometric adaptability and ease by which optical fibers can be embedded within concrete elements has led to the development of a number of innovative applications for concrete elements. This article is intended for a brief introduction into the theories, principles, and applications of fiber optic sensors as they pertain to applications in concrete.. However, due to the fact that the transduction mechanism in optical fibers is invariant of the materials employed, the principles introduced here also correspond to other structural materials. The only application related differences among various materials pertain to sensitivity and choice of optical fiber sensor types.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Eric Fujiwara ◽  
Carlos Kenichi Suzuki

A low-cost optical fiber force myography sensor for noninvasive hand posture identification is proposed. The transducers are comprised of 10 mm periodicity silica multimode fiber microbending devices mounted in PVC plates, providing 0.05 N−1 sensitivity over ~20 N range. Next, the transducers were attached to the user forearm by means of straps in order to monitor the posterior proximal radial, the anterior medial ulnar, and the posterior distal radial muscles, and the acquired FMG optical signals were correlated to the performed gestures using a 5 hidden layers, 20-neuron artificial neural network classifier with backpropagation architecture, followed by a competitive layer. The overall results for 9 postures and 6 subjects indicated a 98.4% sensitivity and 99.7% average accuracy, being comparable to the electromyographic approaches. Moreover, in contrast to the current setups, the proposed methodology allows the identification of poses characterized by different configurations of fingers and wrist joint displacements with the utilization of only 3 transducers and a simple interrogation scheme, being suitable to further applications in human-computer interfaces.


2020 ◽  
Vol 2 (1) ◽  
pp. 26
Author(s):  
Marco César Prado Soares ◽  
Thiago Destri Cabral ◽  
Pedro Machado Lazari ◽  
Matheus dos Santos Rodrigues ◽  
Gildo Santos Rodrigues ◽  
...  

Industry is currently in a period of great expansion, the so-called “Industry 4.0”. This period relies on the development of new sensor technologies for the generation of systems capable of collecting, distributing, and delivering information. Particularly in chemical and biochemical industries, the development of portable monitoring devices can improve many process parameters, such as safety and productivity. In this work, the design of a smartphone-based optical fiber sensing platform for the online assessment of fed-batch fermentation systems is reported. The setup is comprised of a smartphone equipped with a 3D-printed case that couples optical fibers to the phone, and of an application for collecting images from the camera and then analyzing the pixel intensity. Finally, the obtained intensities are correlated to the broth refraction index, which is function of the sucrose concentration. We calculated the sensitivity of this sensor as 85.83 RIU−1 (refractive index units), and then compared its performance to results obtained with a handheld refractometer and with Monod model predictions. It showed to be a reliable, portable, and low-cost instrument for the online monitoring of bioreactors that can be easily reproducible on-site by simply printing it.


2011 ◽  
Vol 255-260 ◽  
pp. 2131-2135 ◽  
Author(s):  
Li Rong Peng ◽  
Xing Hua Yang ◽  
Li Bo Yuan ◽  
En Ming Zhao ◽  
Le Li ◽  
...  

An optical ammonia probe was fabricated based on Microstructured Polymer Optical Fiber (MPOFs) modified by eosin doped silica gel films.The structure of this probe was based on microstructured polymer optical fibers with microholes and these microholes could be used as the substrate of sensing materials and minor reaction pools. The sensing properties of the optical fiber sensor to gaseous ammonia were investigated at room temperature. The sensing probe showed different fluorescence intensity at 576 nm to different concentrations of trace ammonia in carrier gas of nitrogen. The response range was 20-350 ppm, with short response time within 600 ms.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Chia-Chin Chiang ◽  
Jian-Cin Chao

An optical fiber solution-concentration sensor based on whispering gallery mode (WGM) is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and anR2linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.


The Analyst ◽  
2020 ◽  
Vol 145 (15) ◽  
pp. 5307-5313
Author(s):  
Huan Lin ◽  
Xin Cheng ◽  
Ming-Jie Yin ◽  
Zhouzhou Bao ◽  
Xunbin Wei ◽  
...  

A flexible porphyrin doped polymer optical fiber was developed for fast and highly sensitive monitoring of DNT vapors.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
A. Arifin ◽  
Nelly Agustina ◽  
Syamsir Dewang ◽  
Irfan Idris ◽  
Dahlang Tahir

This research discusses the polymer optical fiber sensor for respiratory measurements. The infrared LED that produces light will propagate along the polymer optical fiber which will be received by the phototransistor and the differential amplifier. The output voltage in the form of an analog signal will be converted to a digital signal by the Arduino Uno microcontroller and displayed on the computer. The polymer optical fiber sensor is installed on the corset using a variety of configuration (straight, sinusoidal, and spiral), placed in the abdomen, and a variety of positions (abdomen, chest, and back) using only a spiral configuration. While doing the inspiration, the stomach will be enlarged so that the optical fiber sensor will have strain. The strain will cause loss of power, the resulting light intensities received by the phototransistor are reduced, and the output voltage on the computer decreases. The result shows that the highest voltage amplitudes were in the spiral configuration placed in the abdominal position for slow respiration measurements with the highest range, sensitivity, and resolution which are 0.119 V, 0.238 V/s, and 0.004 s, respectively. The advantages of our work are emphasized on measurement system simplicity, low cost, easy fabrication, and handy operation and can be connected with the Arduino Uno microcontroller and computer.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3011 ◽  
Author(s):  
Claire Guignier ◽  
Brigitte Camillieri ◽  
Michel Schmid ◽  
René M. Rossi ◽  
Marie-Ange Bueno

The objective of this paper is to study the ability of polymer optical fiber (POF) to be inserted in a knitted fabric and to measure both pressure and friction when walking. Firstly, POF, marketed and in development, have been compared in terms of the required mechanical properties for the insertion of the fiber directly into a knitted fabric on an industrial scale, i.e. elongation, bending rigidity, and minimum bending radius before plastic deformation. Secondly, the chosen optical fiber was inserted inside several types of knitted fabric and was shown to be sensitive to friction and compression. The knitted structure with the highest sensitivity has been chosen for sock prototype manufacturing. Finally, a feasibility study with an instrumented sock showed that it is possible to detect the different phases of walking in terms of compression and friction.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4968
Author(s):  
Wern Kam ◽  
Yong Sheng Ong ◽  
Sinead O’Keeffe ◽  
Waleed S. Mohammed ◽  
Elfed Lewis

The power coupling ratio between step-index multimode fibers caused by combined transversal and angular misalignment is calculated. A theoretical description of the coupling efficiency between two optical fibers based on geometrical optics is provided. The theoretical calculations are collaborated by experiments, determining the power coupling ratio between three output fibers with an axial offset and angular misalignment with a single input fiber. The calculation results are in good agreement with experimental results obtained using a previously fabricated optical fiber sensor for monitoring physiological parameters in clinical environments. The theoretical results are particularly beneficial for optimizing the design of optical fiber bending sensors that are based on power coupling loss (intensity) as the measurement interrogation requires either axial displacement, angular misalignment, or both.


Sign in / Sign up

Export Citation Format

Share Document