scholarly journals Direct Electrochemical Reduction of Bicarbonate to Formate Using Tin Catalyst

Electrochem ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 64-70
Author(s):  
Andreu Bonet Navarro ◽  
Adrianna Nogalska ◽  
Ricard Garcia-Valls

Nowadays, the self-accelerating increase in global temperatures strengthens the idea that the cutting of CO2 emissions will not be enough to avoid climate change, thus CO2 from the atmosphere must be removed. This gas can be easily trapped by converting it to bicarbonate using hydroxide solutions. However, bicarbonate must be converted into a more valuable product to make this technology profitable. Several studies show great efficiency when reducing bicarbonate solutions saturated with pure CO2 gas to formate. However, those approaches don’t have a real application and our objective was to obtain similar results without pure CO2 saturation. The method consists of electroreduction of the bicarbonate solution using bulk tin (Sn) as catalysts. Tin is a relatively cheap material that, according to previous studies performed in saturated bicarbonate solutions, shows a great selectivity towards formate. The 1H NMR analysis of bicarbonate solutions after electroreduction show that, without pure CO2 gas, the faradic efficiency is around 18% but almost 50% for saturated ones. The formate obtained could be used to power formate/formic acid fuel cells obtaining a battery-like system, with greater energy density than common lithium batteries, but electroreduction efficiency needs to be improved to make them competitive.

2020 ◽  
Vol 6 (6) ◽  
pp. eaay8538 ◽  
Author(s):  
Jianhua Yan ◽  
Yuanyuan Zhang ◽  
Yun Zhao ◽  
Jun Song ◽  
Shuhui Xia ◽  
...  

Oxide ceramics are considered to be nonconductive brittle materials, which limits their applications in emerging fields such as conductive textiles. Here, we show a facile domino-cascade reduction method that enables rapid transformation of ceramic nanofiber textiles from insulation to conduction at room temperature. After putting dimethylacetamide-wetted textiles, including TiO2, SnO2, BaTiO3, and Li0.33La0.56TiO3, on lithium plates, the self-driven chemical reactions induce defects in oxides. These defects initiate an interfacial insulation-to-conductive phase transition, which triggers the domino-cascade reduction from the interface to the whole textile. Correspondingly, the conductivity of the textile sharply increased from 0 to 40 S/m over a period of 1 min. The modified oxide textiles exhibit enhanced electrochemical performance when substituting the metallic current collectors of lithium batteries. This room temperature reduction method can protect the nanostructures while inducing defects in oxide ceramic textiles, appealing for numerous applications.


2017 ◽  
Vol 48 (2) ◽  
pp. 168-191
Author(s):  
Rebecca Livernois

Climate change has made pressing the question of why we do little to reduce greenhouse gas emissions. By analogy to the puzzle of the self-torturer, I argue that even if interpersonal and intergenerational conflicts of interest were resolved, we may still end up in a regretful environmental state when we aim to maximize our net benefit derived from polluting activities. This is because a rational agent with transitive preferences making climate change decisions faces incentives to over-pollute. This is caused by the presence of marginal costs that are uninformative of well-being in an uncertain and intertemporal decision problem.


2021 ◽  
Author(s):  
◽  
Alex Hannant

<p>Climate change is a global challenge that requires immediate individual and collective action. The self-evident fact that information alone is unable to motivate action suggests that effective communications and engagement will be critical in stimulating the required response. This research project explores how strategic thinking can be employed to support the New Zealand Government's climate change communication and engagement objectives. Strategic thinking is the active and deliberate pursuit of synthesising evidence with a creative anticipation of what might be possible. Rather than work within parameters set by precedent and convention, it represents the deliberate intent to question, disrupt and design new courses of action. This research explores the inertia in mainstream attitudes and behaviours towards climate change; relevant communications and social science best practice and theory; recent trends in New Zealand; and views and opinions from a diverse range of experts. The research outcome is a set of interconnected and interdependent principles that serve to inform and lead the development of a national climate change communications and engagement strategy.</p>


2019 ◽  
Vol 72 (2) ◽  
pp. 70 ◽  
Author(s):  
Shoshi Terada ◽  
Kohei Ikeda ◽  
Kazuhide Ueno ◽  
Kaoru Dokko ◽  
Masayoshi Watanabe

The liquid structures and transport properties of electrolytes composed of lithium bis(fluorosulfonyl)amide (Li[FSA]) and glyme (triglyme (G3) or tetraglyme (G4)) were investigated. Raman spectroscopy indicated that the 1:1 mixtures of Li[FSA] and glyme (G3 or G4) are solvate ionic liquids (SILs) comprising a cationic [Li(glyme)]+ complex and the [FSA]− anion. In Li[FSA]-excess liquids with Li[FSA]/glyme molar ratios greater than 1, anionic Lix[FSA]y(y–x)– complexes were formed in addition to the cationic [Li(glyme)]+ complex. Pulsed field gradient NMR measurements revealed that the self-diffusion coefficients of Li+ (DLi) and glyme (Dglyme) are identical in the Li[FSA]/glyme=1 liquid, suggesting that Li+ and glyme diffuse together and that a long-lived cationic [Li(glyme)]+ complex is formed in the SIL. The ratio of the self-diffusion coefficients of [FSA]− and Li+, DFSA/DLi, was essentially constant at ~1.1–1.3 in the Li[FSA]/glyme&lt;1 liquid. However, DFSA/DLi increased rapidly as the amount of Li[FSA] increased in the Li[FSA]/glyme&gt;1 liquid, indicating that the ion transport mechanism in the electrolyte changed at the composition of Li[FSA]/glyme=1. The oxidative stability of the electrolytes was enhanced as the Li[FSA] concentration increased. Furthermore, Al corrosion was suppressed in the electrolytes for which Li[FSA]/glyme&gt;1. A battery consisting of a Li metal anode, a LiNi1/3Mn1/3Co1/3O2 cathode, and Li[FSA]/G3=2 electrolyte exhibited a discharge capacity of 105mAhg−1 at a current density of 1.3mAcm−2, regardless of its low ionic conductivity of 0.2mScm−1.


2017 ◽  
Vol 155 (5) ◽  
pp. 751-765 ◽  
Author(s):  
M. JIANG ◽  
C. L. SHI ◽  
Y. LIU ◽  
Z. Q. JIN

SUMMARYClimate change has greatly affected agricultural production, and will lead to further changes in cropping system, varietal type and cultivation techniques for each region. The potential effects of climate change on rice production in Fujian Province, China, were explored in the current study with CERES-Rice model and climate-change scenarios, based on the self-adaptation of rice production. The results indicated that simulated yields of early rice in the double-rice region in south-eastern Fujian under scenarios A2, B2 and A1B increased by 15·9, 18·0 and 19·2%, respectively, and correspondingly those of late rice increased by 9·2, 7·4 and 7·4% when self-adaptation adjustment was considered, compared to scenarios without that consideration. In the double-rice region in north-western Fujian, simulated yields of early rice increased by 21·2, 20·5 and 18·9% and those of late rice by 14·7, 14·8 and 7·2% under scenarios A2, B2 and A1B, respectively, when self-adaptation was considered, compared to without consideration. Similar results were obtained for the single-rice region in the mountain areas of north-western Fujian, correspondingly increasing by 4·9, 5·0 and 2·9% when self-adaptation was considered compared to when it was not. In this single-rice region, double rice might be grown in the future at the Changting site under scenarios A1 and B2. When the self-adaptation adjustment was considered, the simulated overall output of rice crops in Fujian under scenarios A2, B2 and A1B increased by 5·9, 5·2 and 5·1%, respectively. Thus, more optimistic results were obtained when the self-adaptation ability of rice production was considered.


Biomimetics ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 47
Author(s):  
Kwok Wei Shah ◽  
Ghasan Fahim Huseien

Climate change is anticipated to have a major impact on concrete structures through increasing rates of deterioration as well the impacts of extreme weather events. The deterioration can affect directly or indirectly climate change in addition to the variation in the carbon dioxide concentration, temperature and relative humidity. The deterioration that occurs from the very beginning of the service not only reduces the lifespan of the concretes but also demands more cement to maintain the durability. Meanwhile, the repair process of damaged parts is highly labor intensive and expensive. Thus, the self-healing of such damages is essential for the environmental safety and energy cost saving. The design and production of the self-healing as well as sustainable concretes are intensely researched within the construction industries. Based on these factors, this article provides the materials and methods required for a comprehensive assessment of self-healing concretes. Past developments, recent trends, environmental impacts, sustainability, merits and demerits of several methods for the production of self-healing concrete are discussed and analyzed.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Zhaodi Pei ◽  
Xiaoxu Zhao ◽  
Huimei Yuan ◽  
Zhen Peng ◽  
Lifeng Wu

Considering the self-healing phenomenon of lithium batteries during intermittent discharge, a self-healing characteristic-based equivalent circuit model of lithium batteries is proposed. The mathematical description of the lithium battery in the self-healing process is obtained through the analysis of the equivalent circuit model. Based on experimental platform, an experiment considering self-healing characteristic was performed. Result shows that the self-healing characteristic-based lithium battery equivalent circuit model can describe the voltage of the lithium battery accurately during the self-healing process.


Sign in / Sign up

Export Citation Format

Share Document