scholarly journals Fog Computing Enabled Locality Based Product Demand Prediction and Decision Making Using Reinforcement Learning

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 227
Author(s):  
Gone Neelakantam ◽  
Djeane Debora Onthoni ◽  
Prasan Kumar Sahoo

Wastage of perishable and non-perishable products due to manual monitoring in shopping malls creates huge revenue loss in supermarket industry. Besides, internal and external factors such as calendar events and weather condition contribute to excess wastage of products in different regions of supermarket. It is a challenging job to know about the wastage of the products manually in different supermarkets region-wise. Therefore, the supermarket management needs to take appropriate decision and action to prevent the wastage of products. The fog computing data centers located in each region can collect, process and analyze data for demand prediction and decision making. In this paper, a product-demand prediction model is designed using integrated Principal Component Analysis (PCA) and K-means Unsupervised Learning (UL) algorithms and a decision making model is developed using State-Action-Reward-State-Action (SARSA) Reinforcement Learning (RL) algorithm. Our proposed method can cluster the products into low, medium, and high-demand product by learning from the designed features. Taking the derived cluster model, decision making for distributing low-demand to high-demand product can be made using SARSA. Experimental results show that our proposed method can cluster the datasets well with a Silhouette score of ≥60%. Besides, our adopted SARSA-based decision making model outperforms over Q-Learning, Monte-Carlo, Deep Q-Network (DQN), and Actor-Critic algorithms in terms of maximum cumulative reward, average cumulative reward and execution time.

2014 ◽  
Vol 988 ◽  
pp. 683-686
Author(s):  
Jia Yang Li ◽  
Qin Xue ◽  
Jia Xing Tong

In Intelligent Transportation microscopic study, driver's physical and psychological factors play an important role for driving decisions . Considered by static factors and dynamic factors, this paper establishes 22 the driver's car-following decision factors in hierarchy.We use principal component analysis gain that nine indicators play a crucial role in driving the decision-making.Conclusion in this article provides theoretical support for the establishment of the next drive decision-making model .


2006 ◽  
Vol 04 (06) ◽  
pp. 1071-1083 ◽  
Author(s):  
C. L. CHEN ◽  
D. Y. DONG ◽  
Z. H. CHEN

This paper proposes a novel action selection method based on quantum computation and reinforcement learning (RL). Inspired by the advantages of quantum computation, the state/action in a RL system is represented with quantum superposition state. The probability of action eigenvalue is denoted by probability amplitude, which is updated according to rewards. And the action selection is carried out by observing quantum state according to collapse postulate of quantum measurement. The results of simulated experiments show that quantum computation can be effectively used to action selection and decision making through speeding up learning. This method also makes a good tradeoff between exploration and exploitation for RL using probability characteristics of quantum theory.


2020 ◽  
Vol 11 ◽  
Author(s):  
Christian Balkenius ◽  
Trond A. Tjøstheim ◽  
Birger Johansson ◽  
Annika Wallin ◽  
Peter Gärdenfors

Reinforcement learning systems usually assume that a value function is defined over all states (or state-action pairs) that can immediately give the value of a particular state or action. These values are used by a selection mechanism to decide which action to take. In contrast, when humans and animals make decisions, they collect evidence for different alternatives over time and take action only when sufficient evidence has been accumulated. We have previously developed a model of memory processing that includes semantic, episodic and working memory in a comprehensive architecture. Here, we describe how this memory mechanism can support decision making when the alternatives cannot be evaluated based on immediate sensory information alone. Instead we first imagine, and then evaluate a possible future that will result from choosing one of the alternatives. Here we present an extended model that can be used as a model for decision making that depends on accumulating evidence over time, whether that information comes from the sequential attention to different sensory properties or from internal simulation of the consequences of making a particular choice. We show how the new model explains both simple immediate choices, choices that depend on multiple sensory factors and complicated selections between alternatives that require forward looking simulations based on episodic and semantic memory structures. In this framework, vicarious trial and error is explained as an internal simulation that accumulates evidence for a particular choice. We argue that a system like this forms the “missing link” between more traditional ideas of semantic and episodic memory, and the associative nature of reinforcement learning.


Information ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 341 ◽  
Author(s):  
Hu ◽  
Xu

Multi-Robot Confrontation on physics-based simulators is a complex and time-consuming task, but simulators are required to evaluate the performance of the advanced algorithms. Recently, a few advanced algorithms have been able to produce considerably complex levels in the context of the robot confrontation system when the agents are facing multiple opponents. Meanwhile, the current confrontation decision-making system suffers from difficulties in optimization and generalization. In this paper, a fuzzy reinforcement learning (RL) and the curriculum transfer learning are applied to the micromanagement for robot confrontation system. Firstly, an improved Qlearning in the semi-Markov decision-making process is designed to train the agent and an efficient RL model is defined to avoid the curse of dimensionality. Secondly, a multi-agent RL algorithm with parameter sharing is proposed to train the agents. We use a neural network with adaptive momentum acceleration as a function approximator to estimate the state-action function. Then, a method of fuzzy logic is used to regulate the learning rate of RL. Thirdly, a curriculum transfer learning method is used to extend the RL model to more difficult scenarios, which ensures the generalization of the decision-making system. The experimental results show that the proposed method is effective.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4055 ◽  
Author(s):  
Zhang ◽  
Wang ◽  
Liu ◽  
Chen

This research focuses on the adaptive navigation of maritime autonomous surface ships (MASSs) in an uncertain environment. To achieve intelligent obstacle avoidance of MASSs in a port, an autonomous navigation decision-making model based on hierarchical deep reinforcement learning is proposed. The model is mainly composed of two layers: the scene division layer and an autonomous navigation decision-making layer. The scene division layer mainly quantifies the sub-scenarios according to the International Regulations for Preventing Collisions at Sea (COLREG). This research divides the navigational situation of a ship into entities and attributes based on the ontology model and Protégé language. In the decision-making layer, we designed a deep Q-learning algorithm utilizing the environmental model, ship motion space, reward function, and search strategy to learn the environmental state in a quantized sub-scenario to train the navigation strategy. Finally, two sets of verification experiments of the deep reinforcement learning (DRL) and improved DRL algorithms were designed with Rizhao port as a study case. Moreover, the experimental data were analyzed in terms of the convergence trend, iterative path, and collision avoidance effect. The results indicate that the improved DRL algorithm could effectively improve the navigation safety and collision avoidance.


2019 ◽  
pp. 125-133
Author(s):  
Duong Truong Thi Thuy ◽  
Anh Pham Thi Hoang

Banking has always played an important role in the economy because of its effects on individuals as well as on the economy. In the process of renovation and modernization of the country, the system of commercial banks has changed dramatically. Business models and services have become more diversified. Therefore, the performance of commercial banks is always attracting the attention of managers, supervisors, banks and customers. Bank ranking can be viewed as a multi-criteria decision model. This article uses the technique for order of preference by similarity to ideal solution (TOPSIS) method to rank some commercial banks in Vietnam.


Informatica ◽  
2009 ◽  
Vol 20 (2) ◽  
pp. 305-320 ◽  
Author(s):  
Edmundas Kazimieras Zavadskas ◽  
Arturas Kaklauskas ◽  
Zenonas Turskis ◽  
Jolanta Tamošaitienė

Sign in / Sign up

Export Citation Format

Share Document